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I. INTRODUCTION

There exist presently two approaches to labeling repre-
sentations of the supergroups SU(N /M ); Kac' has proposed
a unique labeling of irreducible representations in analogy to
Dynkin diagrams. We shall refer to these as Kac-Dynkin
diagrams. Balentekin and Bars”™ introduced supertableaux
in analogy to Young tableaux, which rely on the properties
of the permutation group, to arrive at irreducible superten-
sors which provide a basis for supergroup representations.
The relation between these approaches has been found.® Qur
aim is to elaborate further on this connection, add new in-
sights and clarifications, and establish a useful dictionary.

A Kac-Dynkin diagram provides the highest weight A.
The remaining weights are in principle obtained by applying
lowering operators. This requires lengthy (but straightfor-
ward) calculations,® which yield the eigenvalues of the gener-
ators belonging to the Cartan subalgebra. With this method
necessary and sufficient conditions as well as dimension for-
mulas for “typical” representations have been given."® Also
branching rules for supersubalgebras, especially irregular
ones, have been computed.®

The supertableaux, and the associated supertensors,
provide all the states (or modules) in a representation and the
content of the states is immediately obvious. This makes
them very useful in physical applications.”® Typical and
atypical representations are not distinguished in this ap-
proach and the supertableaux methods apply to both. In su-
pertableaux one uses the concept of supersymmetrization,’
which means that, when bosonic indices corresponding to a
row are symmetrized, the fermionic indices are antisymme-
trized. This can be done by an efficient method? which keeps
close analogy to representations constructed via ordinary
Young tableaux. These analogies can be applied as follows:

SU(N )« SUN/M),

SO(N) «— Osp(N /M),

Sp(2N) «> P(2N).

Through these analogies many practical and useful proper-
ties have been computed for the supergroups indicated above
for all supertableau representations:

(1) matrix representations of the supergroup in tensor
space;>+7

(i} character formulas;>*
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(iii) dimension formulas;**
(iv) eigenvalues of Casimir operators;>™
(v) branching rules for®*

SU(M /N ) — SUM ) x SUNV ) x U(1),

SUM, + M,/N, + N,) - SUM,/N,)
X SU(M,/N,) X U(1),

SU(M M, + N,N,/M,N, + M,N,) — SUM,/N))
XSU(M,/N,);

(vi) harmonic oscillator representations.* %'

(vii) analytic unitary reprsentations of noncompact
SU(M, P /N + Q) in a harmonic oscillator basis'® and in a
superspace Z-basis.'®

The connection to Kac-Dynkin diagrams® for
SU(M /N) can be seen by computing the highest weight
through the aid of the SU(M /N ) — SUM ) X SU(N ) x U(1)
decomposition. In this paper after reviewing this procedure
and giving a translation dictionary to Kac-Dynkin dia-
grams, and several examples, we will be able to establish the
following statements for SUM /N ):

(a) Supertableaux containing only covariant (undotted)
or only contravariant (dotted) boxes correspond to irreduci-
ble representations.

(b) Supertableaux containing mixed dotted and undot-
ted boxes correspond to irreducible representations pro-
vided M, N are sufficiently large compared to the number of
boxes. The irreducibility of some supertableaux requires
conditions also on N-M. For example, isirreducible
for all N # M, but reducible for N = M, as noted in Refs. 2
and 4.

(c) Mixed supertableaux with too many boxes compared
to M, N are generally reducible but indecomposable!

(d) All atypical representations are described by super-
tableaux.

(e) Typical representations with a,, = integer (defined
below) are naturally described. a,, = arbitrary real number
is described with the additional concept of an overall U(1)
phase of the representation in addition to the tableau.

(f) To a given Kac-Dynkin diagram one can find many
corresponding supertableaux.

(g) One can usefully employ supertableaux to compute
the decomposition of direct product of any representations,
provided indecomposable supertableaux are reduced via
Kac-Dynkin diagrams.
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2. THE SUPERALGEBRA SU(M/N)

In the classification of Kac,"'! this is a classical superal-
gebra of type I, called 4 (M-1, N-1). SU(M /N ) is simple for
M #£N.For M = N, one has to divide by U(1). It consists of
an even (“Bosonic”) part, the subalgebra SU(M ) x SU(N)
X U{1) and an odd (“fermionic”’) part, which transforms as
the representation (M, N *) + (M *, N) of the even part. The
Cartan subalgebra consists of the M + N — 1 mutually com-
muting generators H;, the M — 1 first ones belonging to
SU(M ), the N — 1 last ones to SU(V ), H,, playing a special
role. The generator Q of U(1) is a linear combination of H,
[see Eq. (2.10) below]. To each H; corresponds a simple root
a;,a‘‘raising” operator E ;* and a “lowering” operator E .
We shall need the commutation relations

(HLEF]= ta,EF, iLj=---M+N-—1, 21

where g are the elements of the Cartan matrix of SUM /N )
given by Kac'

M
2 -1
-1 2 -1
-1 .,
ta,] = —1 2 -1
—1 0] +1 M
-1 2 -1
’ -1
-1 2
(2.2)
Notice that a,,, =0anda,,,, . , = + 1, otherwise we rec-
ognize the Cartan matrices of SU(M ) and SU(NV).
We also note the commutation relations
[EFE; | =6,H; Vij#M 2.3)

and the anticommutation relations of the two odd generators
corresponding to the simple root a,,:

(E;,Eq)=Hy. (2.4)
The full system of commutation (anticommutation) relations
can either be obtained from (2.1)-{2.4), which characterize
“simple” generators, plus the generalized Jacobi identity,""!
or by the explicit realization of the fundamental representa-
tion of dimension M + N. This will now be done. The gener-
ators are the matrices X:

M N
X=4|B|) M (2.5)
c|pl} N

with the restriction for the supertrace
StrX=trd -trD=0. (2.6)

Introducing the matrices E ; with matrix elements
o a ) .
(EY), =6, ijab=1--M+N, 2.7)
one gets for the Cartan subalgebra
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H =Ei—Ei%

i+ 1
i=1-..M—1,M+1...M+N—1, (2.8)
HM=EAA; +E%i};

all H; have zero supertrace.

The raising operators are £ /;, i <}, the lowering opera-
tors E';, i>j,and the “simple” generators of Eq. (2.1) corre-
spond toj =1 + 1, resp.i — 1. For the odd generators, i<M,

J>Mori>M,j<M. Notice that the anticommutator of two
odd raising or two odd lowering operators is zero.

Finally, the generator Q of U(1) is given, up to a multi-
plicative constant, by

/M
LM
= , 29
9 1/N 29)
/N
which corresponds to
M—lka N-—1 (N—l]
Q= + H,y — Hy ., (2.10
kg] M M ];1 N M ( )
From (2.1) and (2.2) one gets
[QEd]
M1 N-1
= i( o Ay M — N aM+1,M)EA:;
(2.11)

1 W
=4 — - =)EZ.
_(M N M

3. THE KAC-DYNKIN DIAGRAM

According to Kac,' the irreducible representations (IR)
of the superalgebra SU{M /N ) are characterized in a similar
way as IR of Lie algebras. They are uniquely determined by
the highest weight A, which is a vector in the root space. The
state in the representation space corresponding to A is de-
fined by

E*|A) =0,
H|A) =a,jA),

i=1---M+N—1, (3.1)
i=1-..M+N—1. (3.2)

The numbers g, are nonnegative integers for i# M. a,, may
be any real number.

An IR of SUM /N ) is thus defined by the values a; of
the highest weight, which can be noted on a Kac-Dynkin
diagram

Q, 0, On-A e Qpen-1

(3.3)
The part without ® decomposes into ordinary Dynkin dia-
grams for SU{M ) and SU(N ). & corresponds to the odd root
a,, (whose length is zero!), or to the special generator H,,.

One distinguishes typical and atypical IR. For the lat-
ter, one of the following conditions must be satisfied (Kac,
Ref. 1, Hurni and Morel, Ref. 6):
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J M1
ay= Y a— Y a—2M+i+}j
t=M+1 t=1

(3.4)
1<iSMG<M + N — 1.

For the typical representations, none of these relations
is satisfied. Their interpretation is the following. One gets all
the weights of a given IR by starting with the highest weight
and applying lowering operators. The action of the even op-
erators is well known. There are MN odd generators which
anticommute. Hence, each one can be applied at most once,
and the state obtained by applying two different odd genera-
tors is antisymmetric. If |) is some state in the representa-
tion space, it may happen that E ;J E ,; |¢) = 0. This is just
the case when one of the relations (3.4) is satisfied. For exam-
ple,ifa,, =0, E ;L E ,;|A ) =0, where A is the highest
weight. This means that the state E ;; |¢) does not belong to
the same representation: Either the representation starting
with |4 ) is notirreducible, or we must put E ;; |¢) = 0. This
is the atypical case.

For typical representations, one can apply each odd
generator exactly once. If d is the dimension of the IR of
SU(M ) X SU(N )X U(1) corresponding to the highest weight
A, the dimension D of the corresponding IR of SU(M /N }is

D=2MNg (3.5)

with an equal number of bosons and fermions.
For atypical representations, the dimension will always be
lower.

The fundamental representation (D = M + N ) is given
by

OB O (3.6)

Sincea,, = 0, it is atypical (put i =j = M into Eq. (3.4)). For
SU(1/N), we have:

80 -0. (3.7)

Here a,, = a, = a, + 1, which satisfies again (3.4) (put
i=M=1,j=M+1=2).
The conjugate representation (D =M + N)is

380 (3.8)

and is again atypical, also for SU(M /1).
The adjoint representation is

58,888 (3.9)

This is atypical, except for SU(1/2):

&0 (3.10)

whose dimension is 2 - 22 = 8.

Another convenient characterization of the highest
weight A is obtained by considering the eigenvalue ¢ of the
U(1) generator Q:

QlA)=gqg,l4). (3.11)
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Using (2.10) and (3.2), one gets

M1 ka Nt (N—la
qA= z k +aM_ z ( )M+[
k=1 M

=1
Applying odd lowering operators, one gets the other SU(M )
X SU(N ) x U(1) multiplets. Each odd operator is obtained by
the commutator of £ ,; with “simple” even generators.
Since the latter commute with Q, it is enough to consider the
commutator given by Eq. (2.11), applied on a state |¢):

[Q.E 5 11¥) = QE i [¥) — 4, E 4/ )
= — (/M — 1/N)E ;). (3.13)
Thus, for M < N, resp. M > N, the odd generators E ,;

lowers, resp. raises the value of ¢,,. Hence, the “highest”
weight A corresponds to

(3.12)

g, = maximum for M <N,
(3.14)

g, = minimum for M>N.

For typical representations, one has to apply the MN
odd generators in a completely antisymmetric way to get the
lowest weight 4. Since such an antisymmetric combination is
a singlet under SU(M ) X SU(X), the state |4 ) belongs to the
same IR of this subalgebra. The eigenvalue g, is given, using
(3.13), by

9: =g, +M—N, (3.15)
where
QIAY=gq;]A), E|A)=0 Vi (3.16)

For atypical representations, g, will be different from the
expression (3.15), namely, larger if M < N and smaller if
M>N.

In conclusion, the Kac-Dynkin diagram characterizes
uniquely all IR of SU(M /N). It gives immediately the eigen-
values of H; and Q of the highest weight. It allows a usually
lengthy but straightforward computation of all states of the
representation. It gives immediately the dimension and
SUM )< SU(N ) X U(1) content of typical representations,
but not those of atypical representations.

4. YOUNG SUPERTABLEAUX FOR SU(M/N)

Young tableaux for Lie algebras are very convenient for
computing branching rules for representations of subalge-
bras and for establishing the Clebsch-Gordan series of ten-
sor products of IR. They are very useful in practical physics
applications because it is possible to describe states in tensor
notation with the symmetries of Young tableaux.

Balantekin and Bars (BB)*~ have introduced Young su-
pertableaux for SU(M /N ) and showed that these, in addition
to providing a very convenient labeling of representations,
are useful in calculating many properties of super-represen-
tations.

For SU(M ), Young tableaux give the symmetry of the
indices of covariant tensors ¢ . ... One can also introduce
contravariant tensors ¢ * <" They are related to the for-
which is invariant due to the determinant of SU(M ) grou;
elements being one. Although this is not necessary, King!'?
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has introduced Young tableaux for contravariant tensors
(distinguished graphically by a point in the box). A next step
is to introduce traceless mixed tensors 4,7 .

For SU(M /N ), the € symbol is not invariant. Thus both
co- and contravariant tensors are necessary. These corre-
spond to mixed supertableaux. Furthermore, it is possible to
have tensors corresponding to long columns in the supertab-
leaux with more than M + N dotted or undotted boxes.

BB?* assign to the covariant tensor ¢, . the Young
supertableaux:
C l .............. c n
b
: (4.1)
bm

where the b, (i = 1,...,m) counts the boxes in the row i and ¢
{7 = 1,...n) counts the boxes in the column j, with the condi-
tions

b1>b2> bl >bm >0,
(4.2)

26> - 2¢, >0

The conjugate tableau is obtained by interchanging rows and
columns:

YR T (

G

(4.3)

C: n

The supersymmetry property of ¢,,... under inter-
change of the indices 4, B, - - - is analogous to SUM + N}
except that when bosonic indices in a row are symmetrized,
fermionic indices are antisymmetrized. This is the meaning
of supersymmetrization.

Consider now the IR of the subalgebra SU(M )

X SU(N )% U(1) contained in an IR of SU(M /N ). The proce-
dure to get these IR is the same as for SU{M + N ), with the
essential difference that the tableau one would obtain for an
IR of the second algebra SU(¥ ) has to be replaced by the
conjugate tableau. This follows from supersymmetrization.
For details, see the third paper in Ref. 2.

Starting from fundamental representation (dimension
M +N)

SU(M/N} SU(M) x SU(N)

=(g.n+u, (4.4)

the rule is shown in the following example where the de-
composition of an IR of SU(M + N) is compared to the de-
composition of an IR of SUM /N ):
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SU(M+N)  SU(M)xSU(N)

an IZ(J l ]">+

’

+
TN
~——

+
TN

L

v
=
o

SU(M/N) SU(M) x SU(N)

()
(BB)-(@.m)- (2.5

ML)

This rule is easy to understand in tensor notation.? Also from
the point of view of the algebra, each time one replaces an
SU(M ) index by an SU(V ) index, one has to apply an odd
generator. Since the product of odd generators is antisym-
metric, rows (symmetric) are changed in to columns (anti-
symmetric) and vice versa.

Equations (4.4) and (4.6) are independent of M and ¥,
except if M or (and) NV are too small. For example, for
SU(1/2), the following terms are illegal, applying the rules

for SUM ) < SU(N ):
o)+(a4]

[H)

They must be dropped since M and/or /N are too small.
The eigenvalue g of the U(1) generator ¢ is obtained
from Eq. (2.9). Thus for the fundamental representation

A :(Dyl)q:l/M+(l’D)q=I/N- (4.8)

(4.7)

Hencetheg value of some SU(M ) X SU(N ) IR isgiven by
1/M times the number of SU(M ) boxes plus 1//N times the
number of SU(V ) boxes. For example, for the first two terms
of (4.6), one gets

(___ L]'|>q=4/M ! (\_. ],D>q:3/M+I/N .49

Notice that the difference of these two g values agrees with
(3.13).

Contravariant tensors ¢ “# " correspond to conjugate
representations of SU(M /N ), as well as for the subalgebra
SUM) X SU(N ) x U(1). The fundamental conjugate IR is de-
noted by
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SU(M/N) SU(MI xSU(N)
= ( E" )q:—I/M + ( I’B )q:_l/N'

(4.10)

Both g values are negative because the supertrace of @ must
be zero [Eq. (2.6)].

Apart from this, the rules are similar as for the covar-
iant tensor. For example,

(A4 = ( I )q:-z,M +( [ ,E] )q:—I/M—IIN

(o

Finally, mixed tensors ¢4, ="~ correspond to IR only if the
supertrace is zero, 2 ( — 1™t X5 """ = 0, where g(x) = O for
even, and g{x) = 1 for odd components. This is the case for
the adjoint representation

(4.11)

= (. )q=o+(E],D )q=-l/M+I/N
+( 0O, )q=I/M—|/N
+(|-E|j)q,=o+("l)q=o'

The notation for the general supertableau for SU(M /N ) will
be’

(4.12)

b, bl

(4.13)

bm

5. RELATIONS BETWEEN KAC-DYNKIN DIAGRAMS
AND YOUNG SUPERTABLEAUX

Kac' has used the highest weight to uniquely determine
an IR of SU(M /N ). What is the relation between Kac-Dyn-
kin diagrams and supertableaux?

From (3.14) we know the properties of the eigenvalue
q, of Q for the state corresponding to the highest weight A:

g, = maximum for M <N,
{5.1)

q, = minimum for M> N.

The case M = N will not be considered.
From (3.12) we know the relation to the Dynkin labels

a;:
M1 kg, N=1 N _ ]
= +a, — a, . ;- 5.2
9a kgl IY; M 12’1 N +1 (5.2)

We now need only the corresponding information for super-
tableaux.

Let us start with tableaux corresponding to covariant
tensors [see tableau (4.1)].

From (4.8) we know for the fundamental representa-
tion:
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SU(M/N) SU(M) x SU(N)

@ = (0. gem* (1, O0)gein- (5.3)

From (5.1) we see that the highest weight belongs to (I, 1).
From (5.2} it is clear that

a,=1; a,=0, i#l (5.4)
Hence
{0 0 0
] = oo~ (5.5)

in agreement with (3.6).

For a general covariant tableau, one gets g by counting
boxes. From (5.1) and (5.3) one sees that g, is obtained with
the maximum number of SU(M ) boxes. If ¢, the number of
rows, does not exceed M, the number of SU(M ) boxes can be
taken to be equal to the number of SU(M /N } boxes. The
Dynkin labels are given by the familiar formula for SU(M ),
while a,, is fixed by (5.2), remembering that, for SU(M ), a is
the number of columns with K boxes:

a,=b-b,,, i=1---M—1,
ay = by, (5.6)
aM+j=0’ j:l...N_l
o <M.
In pictures,
Cpemverees Cn
by
— v - (5.7a)
b = Lo

V]

where in the SU(M ) X SU(N ) x U(1) decomposition we have
shown just the component with the value g corresponding to
the highest weight. This immediately yields

bib,bsbs by O 0
o—0—0

ifc, = m<M. If ¢, exceeds M, to determine the highest state,
one writes first the step of Eq. (5.7a), and then one has to cut
the supertableau in two pieces. The first piece, which con-
tains the first M rows, is assigned to SU(M ), and the remain-
ing rows are assigned to SU(NV), after conjugating them. The
SU(M } X SU(N ) X U(1) Young tableau thus defined is the first
nonvanishing component in the decomposition of SU(M /N )
— SU(M ) x SU(N ) X U(1), which will have the right value g
corresponding to the highest state.
For example

C| ....... cn
by
‘. ) 11
buol =
bm (5.8)
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On the rhs we have shown the IR of SUM ) X SU(¥ ) corre-
sponding to the highest weight. The value of ¢, is

M b, bmiie, —M

Zut 2

i=1

9 = Ole, —M), (5.9)

where only ¢, > M contributes.

As far as the SU(M ) content is concerned, one can sub-
tract SU(M ) singlets for each column with M boxes. On the
other hand, a supertableau is illegal unless

bM+|<N5 (5.10)

because otherwise every component in the decomposition

vanishes.
With (5.2), (5.9), and the rules for SU(M ) and SU(V ), we
get the generalization of (5.6):

a,=b, —b,,,, i=1---M—1,

aM:bM +C;,
Ay ;=€ —¢ 4y, j=1---N—1, (5.11)
¢ =(c;—M)0(c, - M),

by, <N
These values must be put on the Dynkin diagram

g, 0 Om-CmOu+ Open-1

One should not forget that the b; and ¢ ; are not independent.

For conjugate representations, the procedure is similar
except for the sign changes. For the fundamental representa-
tion, Eq. (4.1) is

SU(M/N)

m =

SU(M) xSU(N)

(B0 Jgecum + (1D Dgacin

(5.12)
From (5.1), we see that the highest weight has
g, = — 1/N. {5.13)
Hence, comparing (3.8) and (5.12),
= 8—8—~-~—g—--~8—<|> (5.14)

For a general tableau, we search for g, using (5.1)and (5.13).
If 5,, the number of columns, is smaller or equal to N, we can
fulfill (5.1) with SU(NV ) boxes only. Using again (5.2) and the
rules for SU(V ), not forgetting to conjugate the SU(V ) tab-
leau, we get

i=1.

a, =0, e M—1,

Ay = —EN’
aM+N~j=Ej_Ej+19 j=1"’N_1, (515)

n=b,<N,
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_Cn o by b,
b.| e|leojeoje E.l
: — || ofef:
- ’ eje| :
bm ofe}:
o|e
[+]n

0 ~-Cw Cy-Cysi C-Co

= 00 ®—0--0--0 (516

if n =b,<N.

Next consider the case where b, exceeds N. We now
must cut the supertableau in two pieces by a vertical line. If
is the index of ¢ ;, the contribution for j < NV is as before. For

Jj> N, one gets an SU(M ) IR. Thus,

Ci Coag)CN Cy Criv Caai
5' [e]e]e feTo]e|e E.
: [ eolej .
—_ — :
= ole]:
bm Ld d EN
(5.17)

The tableau on the rhs again corresponds to the highest
weight of the SU(M /N ) IR. The value of ¢, is

N T (b —N)

g, = — .-:1#1\17 — ,2:'1 @b, —N). (5.18)
A supertableau is illegal unless

Ty <M. (5.19)
Using (5.2) and (5.18), we get for the Dynkin labels a,,

ay_;=b/—bj,,, i=1---M—1,

b=, - N)0®b —N),
Gy = —ey—bi= —¢ — (b, —N)0{b,—N),
AN =C;—Ciprs j=1---N—1

EN+ 1 <M (520)

6. DISCUSSION

We have shown that to each covariant tensor (with a
corresponding legal supertableau) one can sssign a Kac—
Dynkin diagram. The latter, we know, specifies an IR of
SU(M /N ),for M # N.Thesameistruefor contravariant ten-
sors. The case of mixed tensors will be considered in the next
section.

We now show that this correspondence is not one-to-
one. Take, for example, SU(2/3). Consider the following two
supertableaux and their highest weight

p——H—
A — [HEH - |ag= (O 0 -
3
——r——
—_— = )
3 Jeassl IRIC
' 9°2*3
(6.1)
Bars, Morel, and Ruegg 2258



They clearly correspond to the same Kac-Dynkin diagrams.

For SU(M /N ), we find the rule: Two supertableaux cor-
respond to the same Kac-Dynkin diagram if (N + 1) co-
Iumns of M boxes are replaced by N columns of M + 1 boxes.
This amounts to replacing an SU{(M ) singlet with g = M /M
by an SU(N ) singlet with ¢ = N /N, provided there are
enough boxes to start with.

This ambiguity is, of course due to the fact that {5.11)
does not determine the b,’s and c¢;’s uniquely from a;.

A similar rule applies to contravariant tensor (5.20).
Consider for SU(2/3) the supertableaux

~TeTs Su(2)  SUu(3)
TH | R (L E)goe,
ol ! elele 0_l0 4
5 9273 (6.2)
B — [ [ gos = (1B g0
Lo ol : ) EE q:_g-% ' q=‘_3.

Ncolumnsof M + 1boxesarereplacedby N + 1 columns of
M boxes.

Consider now the inverse problem: Given Dynkin la-
bels a;, calculate supertableaux labels b,. There arises a ques-
tion: For typical representations, a,, can be any real number
while the supertableau describes naturally a,, = integer
since the value of Q is determined by an integer number of
boxes. However, for typical representations it is possible to
add any constant to Q, since it remains supertraceless when
the number of bosons is equal to the number of fermions. An
additional constant in Q corresponds to an overall U(1)
phase of the whole representation. This U(1) commutes with
SU(M /N ). Thus, up to this overall phase an arbitrary repre-
sentation of the group is recovered through the supertab-
leau. The role of this overall phase and its significance in
representation theory of supergroups is not sufficiently
clear.

Keeping this in mind, we start from a Kac-Dynkin dia-
gram, and consider first the SU(M )X SU(V ) labels q,
i=15. M- 1, M+ 1,..M+ N — 1) which specify the
highest weight A of an IR. To each set a;, we can assign
either a covariant or a contravariant tensor. The general for-
mulae are, of course, (5.11) and (5.20). To show how they

-work, it is best to give an example. Consider the algebra
SU(2/3}, and the diagram

2 4 | 2

O0—8—0—0 - (6.3)
For the subalgebra SU(2) X SU(3), this corresponds to covar-

iant tensors with tableaux:

o = [ ;

For the SU(3) part, we also indicate the conjugate tableau.
The supertableau is now given up to b, SU(2) singlets:

12
o—0O = j-—-»

(64)

L

b,
— Ny
2 a [
2 2 _— ) (6.5}
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Here, ¢, = 5 and b, determined by a,, using {5.11):
a,=b,+3. (6.6)
To get a legal diagram, b,>2. Hence, (6.5) can be fulfilled for
a, satisfying
a,>5, (6.7)
modaulo the additional constant mentioned above, if the re-
presentation is typical.

Consider now contravariant tensors with tableaux
[compare with (5.20)]

2 12 {o]e]e hd (6.8)
o = - O0—0 = —_— .
ool g g
The supertableau is given up to ¢; SU(3) singlets:
by
——t—
[¢T e ool e
eole|e
ole|® E3
2 02 | 2 YIS (69)
o—e—0—0 = olele
ole
*
*]
With {5.20), we get
a,= —¢y;— 2. (6.10}
Here, ¢,> |, so that a, satisfies
a,<—3 {6.11)

up to the constant mentioned above.
We will see that we can also use mixed supertableaux to

2 a, 1 2
obtain representations of type O—O—O—O for SU(2/3).

Typical representations are those for which a,, is differ-
ent from the rhs of (3.4):
j M—1
ay# Y a,— Y a—2M+i+]
=M+ 1 =1

(6.12)
1<i<M<j<M + N — 1.

A necessary and sufficient condition for covariant tensors is

by >N.

This follows from the more general discussion in the next
section. For example, for SU(2/3), the following are typical
IR:

0 5 0 1
= 0——0—0
0O 4 | 0
= O—8—0—0
_ 0 3 00
= 0—%—0° _ 04 00
I 3 0 0
= 0—@—0—0
(6.13)
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= 0—@—0—0 etc.

Similarly, for contravariant tensors,

cy>M.
For example, for SU(2/3)
IR 1% I 0-2 0 O
olele] — Loooo_|‘3 0 0
o o] ¢ = 000
ad ol d 0-2 0 |
eolele| —
Al ole 0-3 0 O
ol elo] — O—@—O—0O
oo
[ AR 2K J 0_2 'o
o[ ole] = 0—@—0-0
o|e

There are, of course, many more atypical representations
than typical, and the supertableau approach is a convenient
tool to describe both.

7. MIXED REPRESENTATIONS

We have seen that for covariant or contravariant ten-
sors, a,, is limited by inequalities of the type (6.7) or (6.11).
To get more general situations, one needs mixed, traceless
tensors ¢4, . The first important example is the adjoint
representation [see (3.9) and (4.12)].

I 0 [¢] |
- 0—0-® 0. (7.1)

The algebraic rules to go from supertableau labels b; to Dyn-
kin labels g;. are obtained again from Egs. (5.11) and (5.20).
There is, however, one essential complication: Mixed super-
tableaux, while being irreducible when N, M are sufficiently
large compared to the number of boxes, may not always cor-
respond toirreducible representations of SU(M /N ), when ¥,
M are small. But we shall see that they are indecomposable
even when they are reducible. [One of us (I.B.) thanks V. Kac
for his comment on this point.] Consider the general super-
tableau
g . C
b,[*TeTTe b, (7.2)

Suppose it contains m “‘covariant” boxes ¥ and n contravar-
iant boxes #. Consider now the two SU(M )X SU(NV )X U(1)
tableaux, obtained from (7.2):

O

(7.3)

[e]eje]e

q,:

ZI3
zP

and

*[ol¢] (7.4)

_— Qo=-

Z>
+
zI3
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9 =q,—(m+n)1l/M—1/N). (7.5)

Transferring a box (J from left to right, or a box (] from
right to left, amounts to applying an odd lowering operator.
From (3.13)

QF v [¥) = [qy — (/M — 1/N)]E ; |¢) (7.6)

we see that (7.4) is obtained from (7.3) by applying (m + n)
different odd lowering generators. Now, if all tableaux in
(7.3) and (7.4) are legal, these correspond to the state |A ),
resp. |4 ) with highest, resp. lowest, weight. But for an IR,
one can apply at most MN odd lowering generators to |A ).

Hence, if m + n> MN, i.e., if there are too many boxes,
(7.2) does not correspond to an IR of SUM /N ).

The simplest example is given by the supertableau of
SU(1/2):

113
m+n=3 MN=2. (7.7)

The highest weight belongs to the IR of the bosonic subalge-
bra U{1) X SU(2):

{ iy E ’q:o - ( ! )q=o' 78

The corresponding Kac-Dynkin diagram would be

0O 0
0. (7.9)

But (7.7) gives rise to series of U(1) X SU(2) IR:

(_l_)qzo + (g)qz —1/2 +(2)q= —1/2 + (g)q: -1

+(1)q= —1 +(l)q= —1 +(_2_)q= —3/2-
(7.10)

We see that we need indeed three odd generators to go from
¢ = 0 to ¢ = 3, which is impossible for an IR.

Another way to see the reducibility is to try to construct
the supertraceless tensor corresponding to the supertableau
(7.7), as in Ref. 2, for SUM /N )

1
t48) — (4B) __ &4 — D) (DB)
c PcP ‘———M—N-i-l[C( FPlopp
+ (= FERSE(— Pl 1] (7.11)
such that the supertrace is zero:
M+ N
> (e =,
C=1
g(C)=0y C=1"'M,
gC)=1, C=M+1.---M+N. (7.12)

However, when N = M + 1, e.g., for SU(1/2), the denomi-
nator vanishes, so that

t‘é’”’:l‘g’”(—— l}g(A)g(B) (7.13)

contains an invariant subspace which cannot be subtracted.
This means that the tensor is reducible but indecomposable!!

Studying the weight diagram of (7.10) in more detail,
one finds the IR of SU(1/2):

0o 0 o+ ot 02

O + &0 + @0 + 0. (7.14)
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The second term corresponds to the trace. All these IR are
atypical. They are connected together by odd generators of
SU(1/2), some of them being lowering others raising. This
can be schematized as follows:

/ >(2) , (7.15)
arrows representing odd generators. A similar example has
been given by Scheunert, Nahm, and Rittenberg."

Such a representation is said to be reducible (it contains

an invariant subspace) but not decomposable. Another ex-
ample is given by the supertableau of SU(2/3):

olele

(7.16)

whose highest weight corresponds to the Kac—Dynkin dia-
gram

0 0 0 O

o0—®—0—0 (7.17)

and hence is also reducible, although here m + n < MN.
On the other hand, the adjoint representation (7.1) is
clearly irreducible, as well as the typical representation of
SU(2/3):
-l 0 O
EEFA = 6-——0—0.
Also, the supertableau (7.7) corresponds to the typical repre-
sentation of SU(1/3),

_ I 1 0

(7.18)

(7.19)
and to the atypical IR of SU(2/4)
FFD] = o—e—0—0—o. (7.20)

Thus, if M, N are sufficiently large, the mixed tableau is
irreducible.

We can now address the following question: Can every
IR of SU(M /N ), as given by Kac-Dynkin diagram, be repre-
sented by a supertableau? We have already discussed in Sec.
6 the problem of typical representations, where one gets nat-
urally integer values for a,,. Allowing the overall U(1) phase,
it appears that we recover arbitrary values of a,,.

For atypical representations one has to consider Eq.
(5.11) for covariant tensors, (5.20) for contravariant tensors,
and combine them for mixed tensors. Hence, given the Kac-
Dynkin labels for a;, one has to solve for the supertableau
labels b, and b,. Clearly, there are several solutions and in
most cases there is a supertableau corresponding to a Kac~
Dynkin diagram. But again we somtimes face the difficulty
of reducibility when the resulting solution contains too
many boxes relative to M, N. For example, for SU(2/3),

3 0 2 0

Oo—@—0—0

a,=3, a,=0, a,=2, a,=0, (7.21)
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a,=b,—b,+b, —b; =3,

a,=b,+C; —b;, —Cy =0,
,=C;—=Cy+C,—Cy =2, (7.22)
a4:C2'—C +Cl E‘ 0,

= (bi - 3)0 (bi - ),
=(C,—2)8(C; —2)

The solution with the minimal number of boxes is the super-
tableau:

e _ (7.23)

However, this is reducible and contains not only (7.21), but

also IR with lower weights. Other solutions of {7.22) have
3 0 2 0

more boxes. This means we cannot represent O— @ —O—0O

for SU(2/3) with an irreducible tensor.

In conclusion, for each atypical IR one can find a super
Young tableau. Sometimes, this latter is reducible and con-
tains also IR with lower weights (obtained by applying odd
lowering operators).

8. TENSOR PRODUCTS OF IR

Scheunert, Nahm, and Rittenberg'? have shown that
the tensor product of IR of superalgebras is not always fully
reducible. This is due to the fact, mentioned in Sec. 3, that
atypical representations are not always fully reducible. The
example they give is for SU(1/2}):

Q; 0] s} 0 24, 0 20| | 20|-|0
0 X 0O - @0 + &0 + &0

4 x4 = 4 4 8

+ 4 (8.1)

(@, #0, 1); (8.1) has been obtained by explicitly constructing
all sixteen states.

There is a problem for a, = 1, because the representa-
tions (1, 0) and (0, 0) are typical, that is, of dimension 3, resp.
1. This means that they hide, in a nonreduced form, repre-
sentations of dimension 1, resp. 3. It can be shown that the
complete reduction is not possible.

Another example is shown in Sec. 7. Keeping this in
mind, we can still try to learn from the rules of tensor pro-
ducts for classical Lie algebras, especially SU(M ).

There are two main methods: Dynkin diagrams and
Young tabeleaux. If the two IR to be multiplied have highest
weights A, and A,, the decomposition of the product con-
tains the maximal highest weight

Amax = A1 + As (8.2)

The next to the maximal A is obtained by the method of
minimal chain.’* By definition a sequence of simple roots
a;,a,,...a; is aminimal chain linking A, and A, if the
following two requirements are fulfilled: (1) (4, a; ) #0,
(@;, @;)#0,....[a; .A,)7#0 and (2) no simple root can be re-
moved from the sequence without violating (1). One now gets
the highest weight of an IR contained in the decomposition
of the product by subtracting the minimal chain from A,
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A=A +4,- 3 a,. (8.3)

=

(8.2) obviously gives the right result for the product (8.1):
Aax = (@1, 0) + (@, 0) = (2a,, 0). (8.4)

Caution is needed to apply (8.3), since (a,,, a,,) = 0. So
we modify the definition: a,, can be subtracted from a
weight, that is, belongs, to the minimal chain, if that weight
has a nonzero M th component and was not obtained itself by
subtracting a,,.

For SU(1/2), &y, = a, = (0, — 1), and
A= Amax —a,= (201’ l)y (85)

which is the second term in (8.1). The third term is obtained
by orthogonality.

Similarly, one may try to apply Young tableau tech-
niques. Again, some changes are necessary. We have shown
that supertableaux correspond to integer values of a,,, for
atypical representations, as they should, but also for typical
representations (modulo the phase, which restores arbitrary
values of a,,). Actually, the product does not depend on the
value a,,, as long as one stays with typical representations.
Thus in the example (8.1)

2 0

I = oo » (8.6)
1A x A = A4 + + (8.7)

’

which, using {5.11), exactly agrees with (8.1) for g, = 2.

For pure covariant or pure contravariant tensors, we
have found no example where the usual rules for Young tab-
leaux do not apply.

For mixed tensors, the supertableau give again the cor-
rect result if M, N are sufficiently large. But for M,N small
compared to the number of boxes the situation is complicat-
ed, since one encounters reducible representations. Still, the
rules are useful. For example, for SU(1/2),

O x B3 = FFY + @, (8.5)

The left-hand side has dimension 3 X 4. From (7.10}, we see
that the right-hand side has also dimension 12. Working
with Dynkin diagrams we see that the lhs is

10 -l 0 (8.9)
&0 X 8—0O.

2262 J. Math. Phys,, Vol. 24, No. 9, September 1983

Using the above rule, we see that it contains an IR with
highest weight A, + A, = (0, 0), and using the minimal
chain, one withA = A, + A, — a, = (0, 1). Thus we indeed
get two IR contained in (7.14).

The conclusion is that the usual rules seem to work,
provided one decomposes the reducible representations, as
we have shown above.
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A polynomial basis is derived for the symmetric irreducible representations of the group SO (7).
The reduction of SO(7) into [SU(2)]? is considered. The SO(7) generators not belonging to [SU(2)]
are grouped into a bispinor vector, of which matrix elements are calculated. An explicit

expression for the state vector is given.

PACS numbers: 02.20.Qs

I. INTRODUCTION

In a previous article,' the reduced matrix elements of
the generators of SO(7) have been calculated for symmetric
irreducible representations. These reduced matrix elements
followed as a solution of a set of induction equations. Here,
we want to retrieve the same results in a completely different
way. Starting from the basic [1,0,0] symmetric representa-
tion, a polynomial basis for SO{7) is constructed, analogous
to that for the SO(5) group given by Sharp and Pieper.?

Not only are the reduced matrix elements, already pre-
viously derived,' obtained as a result, but with the present

technique it also becomes possible to establish an explicit
}

a=1[} 1 0 } ) 0), b=} 4 6
c=14 1 06 5 =} 0), d=11 4 O
e=0 0 1; 0 0 1, f=10 0 I
g=10 0 1; 0 0 —1).

expression for the state vectors. By considering this specific
method, and by applying in the near future an extension of
the shift operator technique as used by Hughes? in his study
of the SO(5)1[SU(2))” reduction, we hope to gain some more
insight in the way the SO(7)1[SU(2)]? state labeling problem
for general representations can be solved.

il. THE CHOICE OF GENERATORS

The symmetric [1,0,0] representation of the SO(7)
group decomposes into the [SU(2)]® representations® (3,4,0)
and (0,0,1). We denote the respective basis states by

—4 1 0),
_g ‘(%) g;’ 2.1)

The familiar commutation relations for the generators of the [SU(2)]* subgroup algebra are obtained if we represent the

generators by the following differential operators:
Sy = ad, — b3, + cd. —dd,),
T; =\(ad, + b3, — cd. — dd,),

U,=ed, —gd,,
S, =ad, +¢d;,, S_=0bd,+da,,
T,=ad. +b3;, T_=cd,+da,,

U, = \/i(eaf +fag)9 U_= \/—Z-(fae +gc7f)-

(2.2)

It is known that certain linear combinations of the remaining 12 generators form a bispinor vector with respect to the
[SU(2)]’ subalgebra.' It can be verified that the following operators have this property:

TUA 12 o = (1/2)ad, — f3,),

TUE 13 Y = (12N, +13,)
TR 13 V= — (1A2)ad, +ed,)
TUE 12V = (1/2)ed, —cd,)
TV 2 12 1 = (1A2)ed, — b3,),
TUIA 12 = —(1A3)ed, +dd,)

T “—/21/2 1—/21/2 clx] = —(1/\/—2-)(,34: —daf),

T3, 14 o = (1/2)f3, + b3)),

TU3, 2, Y = —(1/42)gd, + da,),

TUZ 12 _1i'= — (1426, —gd.),

THE 5 = —(1/\2)(cd, — g3,),

THE 3 _1'= —(1/A2(ad. + gd,). (2.3)

Besides, this choice reproduces the correct commutator relations (2.28) reported by Vanden Berghe et al.!
Following the reasoning of Sharp and Pieper,” state vectors of an SO(7) symmetric irrep can be described by homogen-
eous polynomials in the basis states (2.1). The SO(7) scalar of second degree is proportional toad — bc — eg + } f*. The number

* Research assistant L. W.O.N.L. (Belgium).
® Research assistant N.F.W.O. (Belgium).
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of monomials of degree v in seven variables is (¢ * °). In order to avoid duplication from that number of states in the [v,0,0] re-

presentation, those which are proportional to powers of the scalar, i.e., (¢**) must be subtracted. We find a number® which
corresponds exactly to the dimension of the representation [v,0,0] of SO(7), namely, (5%°) + (4+*).

lil. CALCULATION OF THE STATE VECTOR

In conformity with a previously introduced notation,’ the state vectors will be denoted by |su,Auv). A state correspond-
ing to maximum angular momentum projections is necessarily of the form

|su,ssu) = N,,a*e"y f(x)
X( — eg + %fZ)(u—Zs—u —2x)/2(ad _ bC)x.

Indeed, the correct [SU(2)]’ behavior is reproduced because according to our choice of generators, ad — bc and — eg + 4 f7
are the only basic [SU(2)]? scalars. Also, the state contained in SO(7) is a polynomial of degree v in a,b,c,d,e.f.

Becaused,d, — d,d, — 9,9, + 1d7 commutes with all the generators of SO(7) and annihilates the perimeter states a’//v!
and e°/y/v!, we have

(3,04 — 8,8, — 8.9, + 107)|su,ssu) = 0.
This property determines f(x) except for a multiplicative constant and we find
(v—25+u—2x)/2)( —eg+ 4/ > *bc — ad )*

|su,ssu) = N, a*e"y . (3.1)
= 4o — 25+ 1 — 2x + (v — 25 — 1 — 2x)/2)!(x + 25 + 1)!
In order to obtain an explicit expression for NV, we calculate now the right- and left-hand sides of
TUE 3 Vlsussuy =|s+4u+Ls+is+lu+ D{s+lu+ Ls+ s+ u+ 1T Y5 173 Vsussu)
and
T s 5 s+ lu+ Lis+is+lu+1)
=|s+1u+2,ssu){s + lu+2,ssu|TU 175 15 _Uls+lu+Ls+Is+lu+1)
+ s+ lu,ssuy(s + lu, ssu|TU 15 13 _Vs+lu+Ls+is+lu+1)
+ |su+ 2, ssuy(su+ 2, ssu| T 13 13 _Vs+lu+Ls+is+lut 1)
+ [su, ssu) (su, ssulTU V3 V5 _Vls+lu+ s+ s+ w4 1)
By equating successively the coefficients of a® * 'e* * !( — eg + 1 f3)' =~ # = “~ 22 in the first equation and
(—eg) >~ “?and (} )"~ >~ “?in the second equation, and taking into account that
(s+lu+ s+ s+ u+ 0T U2 3 Psu,ssu) = (su,ssulTH 17 5 Vs+lu+Ls+ b +lu+ 1),
we can prove that
1/2
N muan e (v+2s+u+5)(2s+2)(2u+3)] D e=1 or —1, (3.2)
N, (v —2s —uw)(2s + 1)(2u + 2)
and similarly that
25+ D2u +2) 12
(+Hlu+ 1, s+ s+ lu+ 11T Y3 13 Vsu,ssu ze[u—Zs—u v+ 254 u+S ( . 3.3
2 2 2 | /72 172 1 ' ) ( )( ) 8(2s+2)(2u + 3) ( )

A second recursion relation for the normalization coefficient is obtained by considering the equalities

T[{g }fi 71]|su,Ssu>=|S+%u+1,S+%s+%u_])<s+%u+1,s+%u_1|T[};% }ﬁ _}llsu,ssu)
s qu— s ds b du— D+ du— Ls+ls+hu— T U2 12 Visussu)
and
TV A Vs+u—ls+is+iu—1)

=|s+ lussud (s + lussu|TU 1% 13 Vs+lu—Ls+b+u—1)
+ |su,ssud (su,ssu|TU V3 _ 13 Vls+u—1s+ s+ 4u—1).

Here, the coefficients of (bc)” ~ %~ */? in the first equation and ( — eg)” ~ * ~ “/? in the second equation are successively
equated. On taking into account that

(s+lu—Ls+is+u— 1T U2 2 _Visussu) = (sussu|TU 1 _ 15 Vs+iu—Ls+bs+ju—1),
straightforward calculations lead to
N, =6,[ v+ 25 — u + 4)(2s + 2)2u ’/26, —lor —1, (3.4)
N, (v—25 +u+ 1)2s + 1)16(2u + 1)
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(25 + 1)2u ]1/2
8(2s+2)2u+ 1)1
(3.5)

(s+lu—Ls+ys+hu—1TU5 7 _Vlsussu) = —6’[(v—?-9+u+1)(v+2s—u+4)

The reduced matrix elements can be calculated by means of the Wigner—Eckart theorem applied to the [SU(2))? state
basis, namely,

(s'u' A | T2 12 Visyduvy = (|| T 2 12 Vlisud(2s’ + 1) '2u + 1)=172

X (sA Ja|s'A ") (spd B Is'p') Cuvly|u'v').
One finds

(s+ lu+ 1TV 2 Vsu) = €el[(v— 25 — u)(v + 25 + u + 5)(2s + 1)(2s + 2)(u + 1)]'7,

(s+u—1|T22Vsu) = —€b(v— 25+ u+ 1)v+ 25 — u + 4)(2s + 1)(2s + 2)u]'?,
whereby € and €’ are the same sign factors as in Egs. (3.2)—3.5).
It is known that for the perimeter state,

|00,000) = e*/y/v!.

But according to (3.1), |0v,000) = Ny, e’ v!/(2v + 1).. Hence N,, = (2v + 1)l/(v!yv!). Together with the recursion relations (3.2)
and (3.4), this is all we need in order to establish &, in closed form. The final result reads
N — €(u72s— u]/2€l1u+2s—u)/22(u—2s~u)/2/u!

su

x[(2s+1 (3.6)

Ao+ 25 —u+2)/2Mv—25s —u/2v + 25 + u + v — 25 + u + 1)(2u + 1){v + 1)! ]‘/2
' (0 + 25+ u + 2)/2)0(v — 25 + u)/2){2v + 3)!

Since the choice of the phase factors and € and € is still free, we can set € = — €' = 1. Precisely this choice makes the
expressions (3.3) and (3.5) coincide with our previous results."
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The formula for the Yamanouchi matrix elements is rederived by the eigenfunction method in a

simple fashion.

PACS numbers: 02.20.Qs

1. INTRODUCTION

In Ref. 1 anew approach to the study of group represen-
tations is proposed, in which the calculation of the primitive
characters, the irreducible bases, the Clebsch-Gordan coef-
ficients, the isoscalar factors, etc., are all reduced to a single
recipe—seeking the eigenfunctions of a certain kind of com-
plete set of commuting operators (CSCO). It is in conse-
quence termed the eigenfunction method. The structure of
the CSCO is very simple, being a linear combination of the
two-cycle class operators of the permutation groups. The
new approach is self-contained, while the eigenfunction
method has the advantage of being easily programmable and
has wide applications in: the calculations of the Clebsch~
Gordan coefficients and the outer-product reduction coeffi-
cients’- the tranformation matrices from the Yamanouchi
basis of S(r) to the S(n) D S(n,) X S(n,) basis’, the coefficients
of fractional parentage for the SU(mn) D SU(m) X SU(n) ba-
sis*>; and the SU(m + n) DSU(m) X SU(n) basis,® etc.

However, an important problem is left over in Ref. 1,
i.e.,, the independent derivation of the formula for the Ya-
manouchi matrix elements by the eigenfunction method. In
this short paper we supply this derivation, which turns out to
be the shortest way to reach this elegant formula.

Il. EIGENVALUES OF THE TWO-CYCLE CLASS
OPERATORS?

Let | Y{") be the Yamanouchi basis vector having the
maximum Yamanouchi numbers in the irreducible repre-
sentation (irrep) (v) = (v,v,-), i.e., the Young tableau Y
has numbers 1 to v, in the first row, v, 4+ 1 to v, + v, in the
second row, etc. We split the two-cycle class operator C,
into three parts:

C,= S (=T, +T. +T,, (1)

jri=1
where 7, (T,) is the sum of the transpositions / and j which
are in the same rows (columns) of Y, and T, is the remain-
ing part of C,, . Let A be the product of the antisymmetrizers
for the columns of Y. From

[C..4]=0 (2a)
and

[T.,4] =0, (2b)
we have

[T,+T,,4]=0 (2¢)
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Therefore
CnA IY(IV’> ZATr| Yllv,> + TcA |Y(IV)) + ATm lY(lv,>

1 1
—[S5vtr — =SS wlm - 1)

XA IY(IV,> +ATm|Y‘lV)>’ (3)
where (z,12,---)=(¥) is the partition conjugate to (v). In the
following, we are going to show that A7, | Y (") as is identi-
cally zero.

Suppose i and j are the two numbers in the same row of
Y™, and i and k are the two numbers in the same coloumn of
Y. According to

L.
. —> : — : —

k k j j

Jod Gy ko.d (k) i.k

we know that
(Jk ) = (ik ) jk i)y (4a)
where (i) belongs to T, and (ik ) belongs to T, . Consequently,
we have
A (k)Y = A (ik ) jk )i Y )
=A(ik)(jK) YY) = — A(jk)|Y"), (4b)

where the property 4 (ik) = — A4 has been used. Thus we
proved that
A(jk)Y) =0, (4c)
which implies
AT, |Y{) =0. (4d)
From Egs. (3) and (4d) we have
C,A|YY)y=A,4|Y), (5a)

with the eigenvalue

R R R B WIITE)

l

%ZV,-(V, —1) ———;—E(V, —v o il=1)
7 7

1
= 721/,(1/, -2+ 1). (5b)
{
From Eq. (2a) we know that the eigenvalues A,, of C,

only depend on the irrep label (v). Therefore Eq. (5a) is equi-
valent to
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C YY) =4,|Y, (5¢)
where Y stands for any Young tableau of the irrep (v).

11l. DERIVATION OF THE YAMANOUCHI MATRIX
ELEMENT

In Ref. 1 it was proved that a Yamanouchi basis vector
of the permutation group S{n) is the simultaneous eigenvec-
tor of the (n — 1) two-cycle operators C,,, C, _,,... and C,,
and we can use the eigenvalues (4,4, _ , ---4,) of these opera-
tors to label a Yamanouchi basis vector, denoted as

|/i' ) = l/{‘n/ln —1 ""12>-

From the relations
[(n - l,n),C,, —1 ]#0, (63)
[(n —1,n),C; =0 forf=nn—2,n—-3,..2, (6b)
we know that the permutation (n — 1,n) has nonzero matrix
elements only between the vectors |A,4, 4, _,-A4,) and
[AuAu_ i An_2ds), e,

(/l :1/1 :17 l'l :17 2"'/l é (n - l’n)llln/ln — l/i'n — 2'"’12>
= const §, . 8 ) {7)

o AL Al 2 A3A,"

The following identity relations are easily established:

n—1

Cn = Cn —1 + Z (i:n)y (83)

Sln-1=C, ,~C, ., (8b)

C,=C, ,+(n— 1,n)"_f(z‘,n —1)n— L) + (1 — L),
(8c)

Using Eqgs. (8b) and (6a), Eq. {8c) becomes
¢, =C,_,—-C,_,

+(n—1,n)C,_,(n— 1,n)+(n— L,n). (9a)
Written in a more elegant form, Eq. (9a) becomes

[Coisln—=1Ln)] . =(C, +C, ,)n—1n)—1,(9)
where [4,B], = AB + BA.

Inserting Eq.(9b) between the two Yamanouchi basis
vectors |4 ') and |4 ), and using Egs. (5¢) and (7), we obtain
And o i=Aslln = Ln)ld,4, _ A))

=u '8, g 5, - 2...5

A3A5°
/“:/111_1':!—1——/{’"~-1+/{n+2- (10)

From Eq. (10) we obtain the diagonal matrix element of
the permutation (n — 1,n)

</{'n/{n —1 '"/{'2|(’z - lin)l/{n/{n —1 '"/12> =0 l’ (1 la)
Uzin_un——l+/{n~~2’ (llb)
as well as the off-diagonal matrix elements
A AL Aslin — La)|A A, | Ay)
[0 foru#0,
- [b foru =0, (12)

where the coefficient 4 is to be determined.

Before determining the constant b, we first examine the
conditions under which the permutation (» — 1,7) has non-
zero off-diagonal matrix elements.
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Let Y,. and Y, be the two Young tableaux correspond-
ing to the basis vectors [, 4, 4, _,-4,) and
|4, An 1A, _2A5), which differ only in the second quan-
tum numbers. Clearly, Y;. and Y, must have the same
Young diagrams (v) and (v”) for the numbers (1,2,...,n) and
(1,2,...,n — 2), respectively. If the numbers » and n — 1 occu-
py the same row or column of the Young tableau Y, the
aforesaid condition implies that Y. and ¥, must be identi-
cal; otherwise stated, (n — 1,n) does not have nonzero off-
diagonal matrix elements between any two vectors |4 ') and
|4 ) if one of them is symmetric or antisymmetric in the in-
dices n — 1 and n. On the other hand, if n and n — 1 are not
in the same row or column of Y, then the above condition
means that Y. and Y, differ only in the interchange of the
positions of n and n — 1.

All taken together, only when nand n — 1 arenotin the
same row or column of a Young tableau Y, and also only for
a unique Young tableau Y. = (n — 1,n)Y;, does the off-di-
agonal matrix element (4 ’|(n — 1,n)|4 ) differ from zero.

According to the identity (n — 1,n)* = 1, and the above
discussion, we immediately have

(Aln—1,mIA ) + (A |(n—Ln)|A")

XA (n—Ln)d) =1 (13)
Consequently, the constant b is determined by the equation
b1>=1—-1/0% (14a)

Under the Yamanouchi phase convention, we have
(A'l(n — Ln)|A ) = (0® — 1)""*/o]. (14b)

Finally, we show that the constant o defined by Eq.
(11b) is exactly the axial distance from n to n — 1 in the
Young tableau Y, .

Suppose the row numbers of the indices n and n — 1 in
the Young tableau Y, are/and /', respectively. It follows
from Egs. (11b) and (5b) that

o= +)=2N_ )+ o + 5 20)]

=i[{fi—=fi )= =S )] (15)
where
fi=wv v, =2).
Therefore
o= v, —1)— (v, =1 (16)

Equation (16) is precisely the expression for the axial dis-
tance given in Ref. 8.
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Many physical and engineering problems lead to the study of the qualitative and geometric
properties of differential equations and their solutions as a function of exogeneous parameters.
The theory of deformation of geometric structures and pseudogroups initiated by K. Kodaira and
D. C. Spencer deals with the common mathematical structure underlying these problems. This
series of papers will adapt the work in the pure mathematics literature to the needs of the
applications, with the emphasis on the theory of deformations of Pfaffian systems. The applied
area to be emphasized in this first part is the theory of nonlinear input—output systems. I will also
present the abstract algebraic structure which seems to underlie the theory of Pfaffian systems,

which I call Cartan—Vessiot filtrations of Lie algebras.

PACS numbers: 02.30.Hq, 02.20.Sv, 02.40. + m

1. INTRODUCTION

Many problems of science and engineering involve dif-
ferential equations depending on parameters. The name bi-
furcation or perturbation theory is often given to this subject.
It has been extensively studied from both a geometric' and
analytic? point of view. My aim here is to study it from the
point of view of the Kodaira—Spencer theory of deforma-
tions of geometric structures.’ Thus, I hope to develop the
“applied” aspects of the Kodaira—Spencer deformation the-
ory.

Let us illustrate with a traditional example of a singular
perturbation. Consider a typical singular perturbation prob-
lem of mathematical physics, e.g., an ordinary nonlinear dif-
ferential equation

dx ( dx )
€ = flx,—|, 1.1

dt? 4 dt (-1
depending on a parameter € #0. Introduce the space of var-
iables:

Z = {(xx",t)}

[the space of 1-jets J '(R,R ) of mappings R — R ].
Introduce the following 1-differential forms on Z:
0 =dx —x'dt, (1.2)
o, =edx' — flxx')dt. (1.3)

For fixed €#0, let & be the exterior differential sys-
tem* generated by 6 and w,, i.., the smallest algebraic ideal
in the Grassmann algebra & (M} of smooth differential
forms on Z which contains 8 and @, and is closed under the
exterior derivative operation d. We can then regard a solu-
tion of (2.1) as a map

oo R—-2Z

such that the following conditions are satisfied:
o*%.)=0, (1.4)
o*(dt)#0. (1.5)

*Supported by Ames Research Center (NASA), Grant NSG-2402; U. S.
Army Research Office, Contract #IL161102RH57-02 MATH; NSF
M(CS8003227.
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Let &, be the exterior differential system generated by
the following 1-forms:

0 =dx —x'dt, (1.6)
wo = flxx')dt. (L.7)

Let & be the exterior differential system generated by
the following 1-forms:

6=dx—x'dt, wi=dt (1.8)
Finally, let £ be the system generated by the following
1-forms:

0=dx—x'd:, wj= flxx) (1.9)

We see that &, is decomposable, in the obvious sense,
into € and (. Further, as € — 0, & _ goes over perfectly
smoothly [as anideal in the Grassmann algebra & (Z )] to & ..

Theorem 1.1: For €0, & is locally equivalent to the
exterior differential system & generated by the following 1-
forms:

0 =dx —x'dt, o =dx. (1.10}
Proof: “Local equivalence” means that each point p, of
M has a neighborhood U and a diffeomorphism

é.: U->U
such that
$.(E)=¥¢.. (1.11)

To see how such a ¢_ may be found, it is most convenient to
construct the dual vector field system [i.e., ¥ (Z )-submodule
of #7(Z )] dual to the exterior systems & . and & . Construct
the following vector fields:

a d
V= "4x —, 1.12
ot dx ( )
ad ad _10 d
Vo= e f—. 1.13)
< ot +x dx f&'x' (
Then,
EWV)=0=&_(V'). (1.14)
Now, there are (locally) diffeomorphisms
¢: U— M,
© 1983 American Institute of Physics 2268



where U is an open subset of M, such that
o.(V)=V,.

Because of relations (2.14), it is readily seen that ¢ carries &,
into &, i.e., ¢ establishes the equivalence of &, for €#£0,
with the “canonical form” system & .

We can now see what this means from the deformation-
of-exterior differential system point of view:

e—~ &,

is a family of exterior differential systems, which vary in a
perfectly smooth way with €. For €,,6,7#0, €_ and & are
locally equivalent. However, at € = 0 a singularity occurs:
The system becomes decomposable. This situation is, from
the general deformation-theoretic point of view reminiscent
of the Inonu-Wigner ‘“‘contraction-of-Lie-algebras” phe-
nomenon,’ namely:

A family € —.Z_ of Lie algebras which are all isomor-

phic for €50, but with a change in algebraic structure

at e=0.

Let us now consider another traditional problem of
mathematical physics which leads naturally to a deforma-
tion of a Pfaffian systems problem.

2. POINCARE LINEARIZATION OF VECTOR FIELDS
WITH ZERO POINTS

Let
d—x———f(x), xeR", (2.1)
dt
be a nonlinear ordinary differential equation such that
f(0)=0. (2.2)

Suppose also that x — f'(x) is a real analytic map of a neigh-
borhood Vofan R "into R ".

Poincaré introduced the technique of linearization for
studying Eq. (2.2). He asked for conditions that there should
exist analytic diffeomorphisms

¢: VoV, 600=0
of a neighborhood U of zero in R " such that ¢ carries the

differential equation (2.1) over to a linear differential equa-
tion

X = ax, (2.3)

where A4 is an n X » matrix. His work has been extended in
many directions in modern times, especially by Sternberg®
and Chen.”

Poincaré’s problem can be considered as a deformation-
of-exterior-differential systems problem. Let Z be R "X R,
the space of all pairs (x,t), x € R ", t € R. Consider the 1-
forms

dx — fdt

and the exterior differential system & they generate. [Since
we are using vectorial notation, i.e., x = (x,,...,X, ), there are
n such forms.] The solutions of (2.1) are then the one-dimen-
sional integral submanifolds of & such that

dt #0.
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For each €0, let
ALY A
be the maps defined as follows:
b (x.t) = (ex,t).
Then,
o *dx — fdt)=edx — flex)dr

Let & _ be the exterior differential system generated by the 1-
forms

dx — € 'flex)dr. (2.4)
Then, we see that
PHE)=¥ .. (2.5)

Now, using the crucial hypothesis (2.2), we see that the
deformation € — &, is smooth also at € = 0. If the Taylor
expansion of fat x = 01is

flx) =Ax 4+ Ax* + -,
then &, is generated by the following 1-forms:
dx — Ax dt. (2.6)

Linearization of (2.1), in the sense of Poincaré, means show-
ing that the family

e—&,

of exterior systems is equivalent, within the group of all dif-
feomorphisms of R " which leave the origin fixed, to the con-
stant family of systems

€ — gO‘

In Refs. 8 and 9, I have shown how the Poincaré prob-
lem can be generalized (in one direction) and related to Lie
algebra cohomology. In one such generalized case, Guillemin
and Sternberg'® have shown how the problem of lineariza-
tion can be carried through in terms of convergent power
series. Gel'fand and Fuks'' have shown how certain of rel-
evant Lie algebra cohomology groups can be computed in
geometric terms. In a later paper in this series I plan to gath-
er together this information to see what can be said in general
about linearization of completely integrable (in the sense of
Frobenius) systems. Rather than go immediately in this di-
rection of generalizations, I will study the relation to the
theory of nonlinear input—output systems.

Let us turn now to another example of interest and im-
portance in control-system theory.!>!?

3. DEFORMATION AND LINEARIZATION OF INPUT-
OUTPUT SYSTEMS

We can now generalize the problem of linearization of a
single differential equation (2.1) by considering inputs and
outputs. Consider a set of differential equations of the follow-
ing form:

Z o,y =gt (3.1)
xXe€R", ueR™ yeR”’

In engineering terms, (3.1) leads to a “black box”
—0—, (3.2)
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which accepts — u(t ),acurvein R ™, as input and calculates
acurvet? — y(t )in R ? as output. The output is then a solution
of a time-dependent ordinary differential equation:

dx

p7ae Slx(e)u(t) y= gx(t)) (3.3)

Another way (3.1) might appear in engineering applica-
tions is via “feedback” or “control” laws

x — u(x), (3.4)
which are maps: R " — R ™. Given (3.4), the output ¢ — y(¢)
is found by solving the time-independent ordinary differen-
tial equations

dx
= = f{x,u(x)), 35
o Slx,u(x)) (3.5)
with
y = glx{t)).
Whatever the physical or engineering interrelation, a

Pfaffian system constructed from (3.1)!*-'* plays a basic role.
Let

Z = space of (x,u, y,t ) =R"XR™XR?XR. (3.6)

Constructon Z the exterior differential system, generated by
the following set of n 1-forms and p 0-forms:

0 =dx — f{x,u)dt, =y—g (3.7)
The solution curves
t— (x{e )u(t), it )t ) (3.8)

of & clearly correspond to the input—output relations (3.2)-
(3.3).

One can now construct various pseudogroups on Z
which, acting on &, transform it into an &’ arising from
another input—output system. In this way, one obtains pseu-
dogroups acting on space of systems. Precisely as we did in
Sec. 2 for the single differential equation (2.1), we can then
consider various deformation-equivalence problems.

Among the systems of type {3.3), the linear ones play a
distinguished role, just as the linear differential equations
play a distinguished role among the general class of differen-
tial equations of form (2.1). They are of the following form:

d_x = Ax — Bu,

dt
where A is an # X n matrix, B an n X m matrix, CapXn
matrix. The theory of this special class of systems is, of
course, the most highly developed, and criteria for a nonlin-
ear system of form (3.1) to be equivalent to a linear one of
form (3.9) [in the sense that their associated exterior differen-
tial systems (3.9) are equivalent'®'’] would be very impor-
tant from both a practical and theoretical point of view. Such
criteria have been under extensive development in the sys-
tem theory literature.'®>° In Ref. 39 I have shown that suffi-
cient conditions for linearization (and associated ‘‘canonical
forms”’) could be obtained, in some simple cases, after
changes of notation, from classical work of Goursat.'’

In order to proceed as we did in Sec. 2, let us first notice
that the set of exterior differential systems of the form

dx — (Ax + Bu) dt,

y=Cx, (3.9)

y—Cx (3.10)
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admits a dilation group
o (xu,yt)— (ex,euept) foreeR—(0). (3.11)

Let us then let this dilation group act on the exterior
differential system associated by (3.9) with the general in-
put—output system (3.1).

P HO)=edx — flex,eu)dt,

(3.12)
¢ *h)=ey— glex).
& *(%) is then generated by the 1-forms and O-forms
dx — e~ flex,eu)dt, y— e 'glex). (3.13)

Theorem 3.1: Suppose that

(x,u) > flxu), x— glx)

are C = (real analytic) maps defined in some neighborhood of
0in R"XR ™and R ". Suppose that the following condition
is satisfied:

£(0,0)=0, g(0)=0. (3.14)

Then, the exterior differential system ¢ *(&) (defined in
some neighborhood of 0in R "X R "X R ?) dependsina C =
(real analytic) way on € at € = 0. In other words, e — & _ isa
smooth deformation (or family) of exterior differential sys-
tems about € = 0. The system &, is linear in the form (3.9), so
that local “triviality” of the deformation € — &, about
€ = 0 implies linearization of the system (3.11) in the sense
meant in system theory. '

Proof: The proof uses only calculus. The maps

(e.x,u) — €~ f (ex,€u),
(ex, ) >y —€~ lg(ex)

aresmooth (i.e., C © or real analytic) locally about the point 0
if and only if conditions (3.14) are satisfied.

Remark: It is noteworthy that the condition (3.14) also
appears naturally in the work in the system theory literature
on linearization by feedback.

Having seen that linearization of nonlinear systems
can, just as for the Poincaré problem and the generalization
developed in Refs. 8 and 9, be interpreted as a deformation-
theory-of-Pfaffian systems, I will now turn to develop some
general geometric insights into deformation theory.

4. THE INTUITIVE GEOMETRIC AND LIE THEORETIC
VIEWPOINT IN THE GENERAL THEORY OF
DEFORMATIONS AND BIFURCATIONS

We will now give an overview of certain features of de-
formation theory as it has evolved from the work of Kodaira
and Spencer,’ Kuranishi, Frohlicher, Nijenhuis and Ri-
chardson®®, Gerstenhaber, Richardson,*' Guillemin and
Sternberg*? and myself.*> We shall discuss “submanifolds,”
“maps,” “‘groups,” and “Lie algebras of groups” without
being precise about their dimensionability and/or degree of
smoothness.

Some of these ideas can be discussed more precisely
and/or rigorously in terms of the theory of categories and
sheaves and the theory of analysis and geometry on infinite-
dimensional manifolds, but I will not go into this here, at
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least in this first paper.
Let M be a manifold (possibly infinite-dimensional),
with p denoting a typical point of M, G a group,
(&p)—gp, GXM—->M

a transformation group action of G on M. This action defines
an equivalence relation on M:

p is equivalent to p’ if and only if there is a g € G such
that

P =gp
The equivalence classes of M by this relation are called or-

bits. The set of equivalence classes is called the orbit space (or
quotient space), denoted as

(4.1)

G\ M. (4.2)
The map
T M— G\M, (4.3)

which assigns top € M the orbit to which it belongs is called
the projection map.

The manifold structure will assign to each point, p € M,
areal vector space, M, called the tangent space to M at p. For
each g € G, the map

e M—>M, p—gp (4.4
will have a differential which will be a linear map

g M, > M, (4.5)
The collection of pairs

(pv), peM, veM,, (4.6)
will form a new manifold

T M),
called the tangent bundle. The map (4.5) defines a transfor-
mation group action

GXTM)—>T(M) (4.7)

of G on T (M) called the tangent vector prolongation of the
given action.
Consider an orbit

N=Gp (4.8)

of G. Suppose it is a submanifold of M. For p € N its tangent
space N, will be a linear subspace of M,,.

Set

G’ ={geG:gp= pj. (4.9
G?is asubgroup of G. Form the coset space G /G *. The map

g§—8p (4.10)
identifies G /G ? with N.

G is called the isotropy subgroup of G at p. For g € G*,
the map g, maps ¥, into itself; hence the assignment
& — 8, defines a linear representation of G” on N, called
the linear isotropy group.

The quotient vector space

M,/N,=N} (@.11)

is called the normal vector space to the submanifold N. The
set of ordered pairs

(bv), peN,veN,, (4.12)
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is called the normal vector bundle to N, denoted as
Nt (4.13)
The linear action
g—> b, 8€GP
passes to the quotient to define a linear representation
(4.14)

This linear representation plays a basic role in determining
the geometric structure of the orbit space

G\ M.
In fact, notice that the assignment

G? — (linear maps N, — N ;).

(4.15)

p—N;
defines a generalized tangent vector bundle to the orbit space
(4.14). Only rarely is this orbit space a “manifold,” in the
usual sense. Some notion of “‘generalized manifold” must be
used. In the Ehresmann theory,** which I am basically fol-
lowing, this is done by using the “pseudogroup” idea, just as
an ordinary manifold is the coset space of its group of diffeo-
morphisms, so a “generalized manifold” is some sort of
“generalized coset space” associated with a “pseudogroup.”

We can now state some general aims of deformation
theory:

(1) Compute and/or parametrize the orbit space G\ M,

(2) For each orbit N, compute and/or parametrize the
normal vector space N ;;

(3) Compute the action of G#on N ;.

5. THE ACTION OF GROUPS OF DIFFEOMORPHISMS
ON PFAFFIAN SYSTEMS

Let us now specialize the general situation described in
Sec. 4. Let Z be a finite-dimensional, C ® paracompact mani-
fold. Let ¥ (Z ) denote the commutative associative ring, un-
der pointwise multiplication of C *, real-valued functions on
Z. Let ZY(Z) denote C =, 1-differential forms on Z. They
form a module over & (Z).

Definition: A Pfaffian system 7 on Z is defined to be a
free submodule of & (Z). The rank of the module is called
the rank of the Pfaffian system.

Let M (m) be the space of all Pfaffian systems of rank m.
Let G be a group of C * diffeomorphisms of Z, i.e., a trans-
formation group on Z.

Remark: Ultimately, we will need the generalization
where G is a pseudogroup, in the sense of Ehresmann,* and
M (m) is replaced by the sheaf whose fiber over a given point
is the space of germs of submodules of rank m, but for the
sake of simplicity and comprehensibility for those who are
not familiar with these elaborations of basic *“‘calculus on
manifolds” theory, I will keep to the simpler “global” nota-
tion.

The action of G on Z by diffeomorphisms defines a
transformation group action of G on M (m) in the following
way. For g € G, g* is an invertible R-linear map:

g% DYz)— Z'2).
The inverse is, of course, just g~ '+,
If & is a Pfaffian system, note that

1
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g P =g 's(0)0e 7]
is also.

Definition: The transform ofa Z e M(m)byage Gis
the system g™ '#(?) given by formula (5.1). This defines a
transformation group action

(8 7)—>8(Z =g~ 'HZ),
of Gon M (m).

From now on, we shall consider the integer m as con-
stant and denote M {m) by M. We now regard M as a sort of
infinite-dimensional manifold and attempt to describe the
tangent and normal bundle to the orbit.

Definition: Given & € M, the tangent space to M at the
“point” & is the following vector space:

M, =Homg , (7,T\Z)/P), (5.2)

where Hom # 7, ( , ) denotes the space of .7 (Z )-linear ho-
momorphisms between the indicated .7 (Z )-modules.

Remark: Notice that differential geometric objects
{e.g., tensor fields) may be modules over various rings in non-
trivial and geometrically important ways. Thus, if

m Z Y

is a smooth mapping, multiplication by #*(# (Y )) defines an
F (Y)-structure on the cross sections of vector bundles over
Z.

The tangent bundle T (M ) to M is the space of ordered
pairs

(Z.7), (5.3)

where Z is an element of M, i.e., a free submodule of Z'(Z )
of rank 2 and y is an % (Z )-linear homomorphism from the
module Z to the quotient module Z1(Z )/ 7.

The action of the group G of diffeomorphisms on Z on
T (M) is then the natural linear action induced by g~ ' for
geq.

Let us suppose now that the G is generated by a Lie
algebra & of vector fields on M. (¥ may be infinite-dimen-
sional.) Thus, each ¥ € & is an element of 77(Z ), the Lie
algebra derivation of .# (Z ). These derivations extend to the
Lie derivative operation on differential forms:

60— .%,(0) (5.4)

The Lie derivative operation is not % (Z )-linear; instead we
have

L fB)=V( 10+ fL(0) forfeF(Z) (55)
Thus, if we take Z tobe an ¥ (Z )-submodule of & '(Z ), and
define the mapping, for f € &7,

ay0)=-,0) projected modules Z into P (Z)/ 7,
(5.6)

(5.1)

G XM (m)— M(m)

we obtain an & (Z )-linear mapping
ay: P >DNZ)/P.
In other words,
a, e Homg, (7, D Z)/ P )=M,.

Now we can state a main result.
Theorem 5.1: Let &2 be an element of M, i.e., a Pfaffian
system of rank m. The linear space

a,: Ve ¥

(5.7)

(5.8)
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is the tangent space (GZ )}, to M at the point Z.
We now turn to systems theory for application of these
geometric ideas.

6. ACTION OF THE FEEDBACK GROUP ON LINEAR
SYSTEMS

Let us look at the feedback equivalence problem for
nonlinear input systems, say of the following form:

dx' : a
o = fixu)dt, u={u°, 6.1
1<i, j<n, 1<a,b<m.

Let Z be the space of variables (x',u%1), i.e.,
Z=R"XR"XR. (6.2)

Consider the Pfaffian system on Z generated by the forms

' =dx'— fidt. (6.3)
Denote such systems by o. ¢ is then a free submodule of
D MNZ) of rank n, i.e., a Pfaffian system. Denote it by

P (o).

Let 3 denote the space of all systems defined in this way
on the manifold Z. X is thus parametrized by the n-real-
valued, C ~ functions

FlLnfr
onR"XR"™

We are interested in transforming the forms 6  given by
(6.3), and hence the Pfaffian system they generate, under the
feedback group G:

x—>dx)=x,

u—nxu)=u'.

The Lie algebra & of this group is the set of vector fields of
the following form:
yo. d a
V= a‘(x — + Ba X,U) —, (64)
) ax! o) ou’

where a'{x) and B {x,u) are C « functions of the indicated
variables.
Let us calculate the Lie derivatives

N no__ jif_i_ aéf_‘i
L0 =dla) (a 8x’+ﬂ au")dt

2 g (L L)
ox/ ox’ du’
o ; ;of aaf')
=|— — —= 4+ —— df, mod 90’.
(a;af o7 P “l
(6.5)
Set
. d
we=fi 2 (6.6)
4 ax’

Thus, W * is a parametrized vector field in the variables (x),
with (u) as the parameter. Set

A=a' 9 (6.7)
ox'
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a vector field on the space of (x');
a
o
a family of vector fields on the space of the («4°), parametrized
by (x). Then, {6.5) can be written in a more coordinate-free
way as follows:
L0 =dx'([AW] + L (W) dt, (6.9)

where .Z 5 (W) denotes the Lie derivative {in the variables
alone) of the W by the vector field B.

Now, the tangent space 2 to the family of output sys-
tems of form (6.1} can be identified with a set

(F '(x,u),....F "(x,u))

of functions of (x,u). We can then state these geometric devel-
opments in the following more concrete way.
Theorem 6.1: Suppose that

dx' ;
o: o = fi(x,u)
is an input system with state vector
x={(xYeR"
and control vector
u=@Wu)eR™
Let € be a real parameter, 0<e<1, and let

dx’ ;
o ——= fix,ue
7 fxuz€)
be a family of systems depending mostly on the parameter e,
and reducing to o at € = 0. The tangent vector to the curve

t— o, in X is then represented by the functions

B= B° (6.8)

(6.10)

(6.11)

Fix,u) = —(;—fé (x,4,0). (6.12)

Suppose that one can find functions {a‘(x), 8 “(x,u)) such that
da’ aft af ;
—f —a’=— 4 B —— = F'(x,u).
ax! 4 ax/ o au’ )
Then, one can find a one-parameter group

(6.13)

t — g'(e) = expleV)

of feedback transformations acting on the space of systems 3
such that the curve

t>o! = g'(—é€o. (6.14)
in the space of all systems has tangent vector zero at € = 0.
We can then consider (6.13) as a set of linear equations
for the functions (&, B) of the variables (x,u). We can then
iterate the procedure and ask for existence of a one-param-

eter subgroup
€ —g,(€)
in G such that
€—0; = g(—€g'(— e, (6.15)

has first- and second-order tangent vectors equal to zero at
€ = 0. Continuing in this way, we may find “formal” expan-
sions:

o, = g'(e) g*(e) - (o), (6.16)

2273 J. Math. Phys., Vol. 24, No. 9, September 1983

where o is a system which is independent of 0. If oris a linear
system, and if the formal expansions (6.16) can be made to
converge, we obtain linearizations. Of course, in other
works?>? linearizations have been found by explicitly con-
structing the feedback transformations by solving a linear
partial differential equation, but the material in this section
provides a “geometric” setting for these procedures, and
possibly also a systematic way of algebracizing the various ad
hoc procedures for finding asymptotic and/or approximat-
ing expansions used in the applied mathematics and math-
ematical physics literature.

There is another reasonable way of proving the exis-
tence of these linearizing maps rigorously: The use of one of
the functional analysis implicit function theorems.'* This
involves choosing the notion of “smoothness” for the maps
involved in construction of the infinite-dimensional mani-
folds in such a way that these techniques can be applied.
Working this out in nontrivial situations is a technology of
its own, and I will not attempt to enter into it here.

7. CARTAN-VESSIOT FILTRATIONS

We have just seen that the problem of deformation/
bifurcation/linearization of nonlinear input systems can be
put into a general setting of the theory of geometric struc-
tures. I now want to develop an algebraic structure adapted
to the study of Pfaffian systems and their deformations, ab-
stracted out of Refs. 17 and 45-47.

Recall first some terminology from linear algebra: Let
V be a vector space. An ascending filtration on V'is a se-
quence of linear subspaces V%,V !, V2, .. of ¥ such that the
following conditions are satisfied:

(a) vecv'icvic .., (7.1)

b) V= U V,. (7.2)

n=0
Now, we postulate a Lie algebra structure for ¥; hence
change notation ¥ — (L ), and consider a relation between
the subspaces of the filtration and the Lie algebra bracket

(.}
Definition: Let L be a Lie algebra with bracket[ , ]. An
ascending filtration

L°CL'CL?*C - (7.3)
of linear subspaces for L is said to define a Cartan—Vessiot
filtration if the following conditions are satisfied:

[L/,L/} C L'+ forj=0,1,-. (7.4)

Note that a linear subspace L ° of a Lie algebra & canon-

ically defines a Lie algebra L, and an ascending Cartan-
Vessiot filtration, in the following way:

L = smallest Lie subalgebra of & containing L °, (7.5)

L'=L°+[L°L", (7.6)
L 2 — (L l)l
=L'+[L'L", (7.7
and so on.

In differential geometry, this construction has appeared
in the work of Goursat, Cartan, and Vessiot'”*>*’ on Pfaf-
fian systems. Let Z be a finite-dimensional, C ©, paracom-

Robert Hermann 2273



pact manifold,
Y =22)
= C =, real-valued vector fields.
¥ is also a ¥ (Z )-module. Suppose
L°is an % (Z )-submodule of ¥(Z).
Its annihilator
PLY)={0eZNZ) 6(L° =0} (7.8)

in 4 (M) defines a Pfaffian systemonZ. The L' C L? C...
defined by (7.5)—7.7) automatically are also % (Z )-submo-
dules of 77°(Z ). They are called the derived Pfaffian systems of
7(Z).

8. THE STRUCTURE TENSORS ASSOCIATED WITH
CARTAN-VESSIOT FILTRATIONS

Let us return to the general algebraic study of a Cartan—
Vessiot filtered Lie algebra:

L°CL'CL*C - C L, (8.1)
[L/L7] C L/, j=0,1, .. (8.2)
Define skew-symmetric bilinear maps
72 LAL/—L/* /L7, j=0,1,-, (8.3)
as follows:
Tj(Al’AZ) = [4,.4,],

The sequence

mod L' *' forAd,d,eL’. (8.4)

T()’Tl’ oo

is called the bilinear structure tensor associated with the fil-

tration.
One can also define multilinear structure tensors:
P =L . XLI*2 LI+ (8.5)
as follows:
TO(A 1A)=T(4,45)
E[AI’AZL modL O’
= Ayd,)(4,), modL® ford,d,c L°(8.6)
Then
H(A,,Az,...,Aj+2) = Ad{4,)Ad(4,) -+ Ad(4,, ,), mod L,

(8.7)

j=01,2,, ApAy..A;,, L’

As indicated in Ref. 39, these multilinear maps (which,
as we shall see in the next section, have a “tensorial” charac-
ter in the geometrically relevant cases) are the basic invar-
iants for the equivalence problem, in the sense of Lie and
Cartan.

Remark: If this process is specialized to the Pfaffian
system associated with linear input systems, one obtains the
Brunovsky feedback invariants for linear input systems.”¢

9. CARTAN-VESSIOT FILTRATION WITH A MODULE
STRUCTURE

So far, we have been dealing with vector spaces over a
field of scalars and with Lie algebra structures defined over
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these fields, i.e., the following rules are satisfied:
[ad,.4,] = a[4,,4,]
= [4,,a4,), (9.1)
forA,,A, €L,

In differential geometry, one encounters generaliza-
tions of (9.1), where “a” is an element of a ring (possibly even
noncommutative), which acts on the Lie algebra L, to make
L an o/-module. I will now briefly indicate how such a struc-
ture can be introduced in a way compatible with the Lie
algebra structure and filtrations introduced previously.

I will also briefly indicate how this can be used “geome-
trically,” in terms of vector bundles on manifolds.

Definition: Let L be a Lie algebra, and let </ be a ring,
i.e., & has a multiplication

a € scalar field.

(@y,a,) — a,a,,

which is associative, but not necessarily commutative. Sup-
pose that L is a Lie algebra and a (left) o&/-module, i.e., there
is a bilinear map

(a,4)—ad
of
& XL —L
such that
a,(a,4)=(a,a,)4 fora,a,e o, AecL. (9.2)

Then, the »/-module and Lie algebra structure on L are
compatible if the following conditions are satisfied:

Forac o/, A,A,e€L, [A,ad,] — a[A,,4,] lies in the

smallest .o/ -submodule of L containing 4, and 4,. (9.3)

We can utilize these properties in the following way:

Theorem 9.1: Let L be a Lie algebra with an ./-module
structure compatible with the Lie algebra structure, in the
sense above, and let

L°CL'C - (9.4)
be a Cartan-Vessiot filtration of L with the following addi-
tional property:

Each L/, j = 0,1,-, is an & -submodule of L, i.e.,

al’C L’ forae «. (9.5)
Then the structure tensor mapping:

T LjXLj——->Lj+1
is an ./ -bilinear mapping, i.e.,

7'1(‘11141,‘12'42) = 01‘127}(‘41»‘42)
fora,a,e of, AjA,eL; j=0,1,-. (9.6)

Progf: This is an obvious consequence of condition (9.3).

Remark: Theorem 9.1 is “trivial,” i.e., is an immediate
consequence of the “axioms” used to define the object it
deals with. However, it has important geometric conse-
quences, proving the tensorial nature of various integrability
terms encountered in differential geometry. Specialize L and
o as follows:

& is the commutative associative algebra of C ~, real-
valued functions on a manifold Z.
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L is the Lie algebra and «/-module of C * vector fields
onZ.

L% C L'C ..is a Cartan—Vessiot filtration, such that
each L/is alocally free submodule of L, i.e., L/ can be identi-
fied with the C = cross sections of a nonsingular vector bun-
dle E,onZ Then, the structure maps 7; are generated by
bilinear, skew-symmetric bundle maps:

I will not do so here, but will turn to a sketch of a defor-
mation theory of Cartan-Vessiot filtrations.

10. THE DEFORMATION THEORY OF CARTAN-
VESSIOT FILTRATIONS OF LIE ALGEBRAS

Deformation theory has been applied successfully to
both geometric and algebraic structures. Having isolated an
algebraic structure involved in the Cartan-Vessiot work, it
would be interesting to apply algebraic deformation theory
toit. I will not attempt that ambitious program here, but will
sketch a deformation theory of the Cartan—Vessiot structure
(which is a fundamental one for system theory!) along the
lines of the standard Lie algebra deformation and equiv-
alence theory. Let L be a Lie algebra, .« a commutative ring.
Suppose L has a &/-module structure which is compatible
with the Lie algebra structure.

In this section we shall deal with Cartan—Vessiot filtra-
tions

L°cL'C-CL,
satisfying the following condition:

Each L’ is a free ./ -module of rank n;. L is a free /-
module of rank n, ny,<n,<n,< - <n. (10.2)

Consider the integers n,,n,, - as fixed, and let I"be the set of
Cartan—Vessiot filtrations satisfying these conditions.
Let G be a group, with a representation

(g.a)—ga, (8A)—gA
by G on & and L such that for each g € G:

a — ga is a ring isomorphism,

(10.1)

A — gA is a Lie algebra isomorphism,

glad ) = gla) g(4). (10.3)

Each g € G then sends such a Cartan—Vessiot filtration
L° C L' C - into another one

gL Cgll')C .
We thus have a transformation group action of Gon I'. Asin
other deformation theories, our goal is to parametrize the
orbits of G acting on I” and the orbit space G \ I". As we have
seen earlier, the first step is to identify the tangent and nor-
mal space to each orbit.

Suppose then that

Yo=(Lo CLg C )
is an element of I". Suppose that

(10.4)

t—alt), 0<il,
is a one-parameter family of linear maps. L — L such that

alt)ad ) = aa(t)A) (10.5)
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forae o/, Ael,

i.e., each a(t) is .&-linear,

a(0) = identity map, (10.6)
[a(t)L{)’a(t)L{) ] - a(t )L{) fOl'j = 0!192’ % (107)
or
alt) '[alt)Ly,alt)L)] C LLt! (10.8)
forj =0,1,2,.- .
Set
B=2at),_,. (10.9)
dt B

Differentiate both sides of (10.8) with respect to ¢, and set
t=0:

—B([4,4:1) + [B(A4))A4,] + [4,,8(4;)] e L4+ (10.10)
for 4,,4, € L4,.

For each integer j, let
B;: Ly —L§+TY/L, {10.11)

be the map which results from applying 8 to L4, then reduc-
ing modulo L,. We can then apply this to (10.10), obtaining
the following result.

Theorem 10.1: The maps 5; indicated in (10.11) (which
algebraically are maps of the “filtered” to a ““graded” struc-
ture) satisfy the following cocyclelike condition:

=B 1([41,45]) + [B{41)A4,] + [4.18,(42)] =0 (10.12)
ford,,A,eL4, j=0,1,2,..

Thus, I', , the tangent space to the set of Cartan—Vessiot
structures with given indices (ngy,n,, ---) can be considered to
be the vector space of the maps (5,,8,, ---) satisfying (10.12).
We can now describe the tangent space (Gy,),, to the
orbit Gy, of the group G.
Theorem 10.2: Let the Lie algebra & of G act on L via

Lie derivative

d
A)=—exp(tB)A)|,_
Bl4) ” pitB)A4)|. o

forBe %.
Then the tangent space (Gy,),, to the orbit (Gy,) for the
group G is the space of such (5;) such that

Bi(d4)=B(4) fordeL’, (10.14)

where B is an element (independent of j) of the Lie algebra
9.

11. CLOSING REMARKS

Just as in the Kodaira—-Spencer theory,* we have de-
duced an algebraic substructure to the problem of deforma-
tion of the sort of geometric structures involved in the defor-
mation-equivalence theory of Pfaffian systems. The
“first-order obstructions,” i.e., the normal vector space to
the orbits of the equivalence group, are then computable in
algebraic terms. In certain cases, these obstructions can be
related to the Gel’fand-Fuks cohomology groups,'! or com-
puted by generalizations of their technique.

In this first paper, I have indicated how some of the
linearization problems of nonlinear control-system theory
fit into this general framework.

(10.13)
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We prove the isospectral property for certain families of linear non-self-adjoint operators which
play a role in inverse scattering theory for a class of nonlinear evolution equations of interest in
physics. These include the sine-Gordon and nonlinear Schrédinger equations.
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The isospectral problem plays a central role in the ap-
plication of inverse scattering theory to nonlinear evolution
equations (see, for instance, Ref. 1) and originates in the
pioneering discovery of Gardner et al.” that the spectrum of
the linear operator L (¢) associated to the {nonlinear)
Korteweg—de Vries (KdV) equation is independent of time ¢.
In this case, L (¢ }is a family (parametrized by ¢ ) of self~adjoint
operators of Schrodinger type, and this invariance—referred
to as the “isospectral property” of the (nonlinear) flow—is
proved through construction ofa family U (¢ ) of unitary oper-
ators such that

Ut)L(t)U(t)~" = L(0). (1)
The above-mentioned construction proceeds as follows. One

proves that there exist operators M {¢ ) such that, for the mo-
ment, formally,

dL(t)

" (M(z), L(z)]. (2)
This is sometimes abbreviated by saying that {L, M } forma
“Lax pair,” because Lax proved in his fundamental paper>
that (2) is in fact equivalent to the KdV equation (for the
corresponding choices of L and M ).

From (2), M is seen to be necessarily (formally) skew-
adjoint: in fact, (1) and (2) are equivalent, with

- 1 4U(t)

M) Ule) 7 (3)
For a large class of evolution equations, however, L is not
self-adjoint. This occurs with the generalization by Ablowitz
et al.* of the Zakharov—Shabat® systems, which include the
sine-Gordon and nonlinear Schrodinger equations. In Ref. 4
the isospectral property for a class of L (t ) was assumed and
the consistency equations derived under this assumption
were shown to be equivalent to a large class of evolution
equations. This is consistent with, but does not prove, the
isospectral property for the operators involved, because at
least one component of the pair (usually M ) depends parame-
trically on the eigenvalue. Fortunately, there exist “true”
Lax pairs for many evolution equations considered in Ref. 4,
thatis, withboth L (t)and M (¢ ) independent of the eigenva-
lue. For the sine-Gordon equation they were constructed in

* Supported in part by FAPESP-Séo Paulo, Brazil. .
® Supported in part by Conselho Nacional de Desenvolvimento Cientifico e
Tecnolégico-CNPq.
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Ref. 6, and for the nonlinear Schrodinger equation, in Ref. S.
Such treatments seem, at the moment, indispensable for a
rigorous mathematical treatment of the application of in-
verse scattering theory to these equations. In these cases,
however, L (t) remains not self-adjoint, and M (¢ ) not skew-
adjoint, so that the isospectral property must be proven dif-
ferently. We consider here a theorem on the invariance of the
discrete spectrum, which is enough for applications. Invar-
iance of the whole spectrum follows from general properties
of the family L (¢ ): this problem will be studied elsewhere.’

Finally, we remark that there exists, as yet, no general
method to find Lax pairs: see, however, Ref. 8, where a meth-
od is developed for a class of evolution equations. It is, how-
ever, an open problem to find such pairs for several nonlinear
equations of physical relevance, such as the Maxwell-Bloch
equations of self-induced transparency,”® but we believe the
structure described below [Eqs. (4)—{6)] to be applicable to a
wide class of nonlinear equations.

We conclude this introduction with two remarks of
general nature concerning Lax pairs. First, it has recently
been proven that for Hamiltonian systems, the dynamical
equations may always be written in the special Lax form'°
(2). Second, Eq. (2) is of great importance in the general the-
ory of completely integrable systems, allowing a unified deri-
vation of conservation laws (see, e.g., Ref. 11 for a nice re-
view). Using our results, the latter method yields a rigorous
derivation of conservation laws for the sine-Gordon and
nonlinear Schrédinger equations.

In this paper, we shall deal with “small perturbations of
self-adjointness (and skew-adjointness)” in the following
sense. We shall be working in a fixed Banach space X, and
denote by D (4 ) and 0, (4 ) the domain and the discrete spec-
trum (i.e., the set of isolated eigenvalues of finite multiplicity)
ofan operator 4 on X. Theoperators L (f jand M (¢ ) forminga
Lax pair will be assumed throughout to have the form

L(t)=L,+ Lyt), 4)
Mt)=M, + M,t), (5)

where L, is self-adjoint on D (L,), M, is skew-adjoint on
D (M,),and L,(t )and M,{t ), are,foreach t € R, bounded oper-
ators on X. We further assume that

D(M\L,)CD(M)nD (M,). (6)

To simplify proofs, and because it holds in the examples
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we shall consider, we finally assume that
DM,)CD(L)) (7)

[Hence D (L,M,) =D (L\(M, + &)™ '(M, + {\M,) DD (M 1)
nD (M,) by (6), where ¢ € R, £ #0.] Proofs may, however, be
modified if (7) does not hold, yielding similar results.

We now describe briefly the strategy of the proof, which
is very simple. Let £, € o, (L (0)). Under certain assumptions,
the isolated eigenvalues of L (0) are simple.” Let u, be the
associated eigenvector, and suppose

uy€ D (M) ®)

For each ¢ € R, define the vector

SUE)=L(t)uolt) — Eouolt), )

where u,(t ) is the (hopefully) unique solution of the initial-
value problem

dult)

o Mt)u(t),

u(0)=uy,e D (M,). (10)
Then by (2), we have, formally,

Y _ pefie), £10)=o. (1)
dt
By uniqueness, f{t) =0 V ¢ € R, and hence
o4(L0)Coy(L(t))

Reversing the arguments, o, (L (¢))Co,(L (0)).

In order to render the above formal arguments rigor-
ous, some additional assumptions are required. In order to
control the problem of existence and uniqueness of the ini-
tial-value problem (10), we use theorem X-70 of Ref. 12,
which is reproduced for convenience as Theorem A1 of the
Appendix.

Assumption (a) of Theorem A1 is satisfied if a suitable
real constant ¢ is added to M,, which does not alter the re-
sults {see Ref. 12, p. 286). This constant might depend on ¢
(because we are not assuming ||M,(¢ )j|<c < « for ¢ indepen-
dent of t € R), but it may be chosen uniformly in ¢ for ¢ in any
compact subinterval of R, by the forthcoming assumption
{B), and this suffices {(see Theorem 1). We denote by B (X ) the
set of bounded operators on X and define the formal opera-
tor families:

F(t)=[L,Myt)}(M, + &), (12a)
Gt)=IM,Ly(t)I(M, + )", (12b)
H(t)=[M Mt))(M, + )", (12¢)

where [4,B ] denotes the commutator of two operators A and
Bon X, and § € R is such that (M (¢) + &) satisfies (a) of
Theorem A1 and may vary with the compact z-subinterval as
discussed previously. We denote by B (X ) the set of bounded
operators on X and state for convenience:

Definition 1: An operator family {4 ()€ B(X);te R ]is
said to be smooth if 4 (¢ ) is strongly continuously differentia-
blein 7 € R and uniformly bounded in ¢ in the operator norm
for ¢ in compact subintervals of R.

Our main additional assumptions may now be stated:
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(A) Laf2),

(B) Ms(t),

(C) F(z),

(D) G (t), and

(E)H(z)
are smooth operator families.

By (5) and assumption (B), it follows that assumptions
(b} and (c) of Theorem A1 are satisfied for the initial-value
problem (10) which has, therefore, a unique solution which
we denote by ut ).

Proposition 1:1fu, € D (M 3)nD (M)in (10), then L, u,(t)
is continuously differentiable in ¢ for ¢ in any open subinter-
val of R.

Proof: Let x(t \=(M, + & Ju(t ). Formally x(t ) would sat-
isfy the differential equation

dx(t)

” = (M, +5M ()M, + &) 'x(t) (13a)
with initial value
x(0) = (M, + ¢ Jup € D (M,). (13b)

By (6) and assumption (E), the operator family

R(t)=(M, + M )M +8)7 =M+ L)+ S(),
where

S(t)=H(t) + Mir)
satisfies assumption (a) of Theorem A1 (except for eventually

modifying § as was discussed before). We have, in the nota-
tion of the Appendix,

Clts)=(1/(t —sHR () — R(sHR (s)™"

=(1/(t—s)S(t) = SEHR ()"

It is clear that (b) and (c) of theorem A1 follow from assump-
tions (B) and (E) if we prove that R (s) ' is (1) strongly contin-
vous in s and (2) uniformly bounded for s in compact subin-
tervals of R. Again, we may choose £ such that
IS ()M, + &)~ !||<c < 1 withc chosen uniformly insin com-
pact subintervals. Hence

Ris)™ =M +5) 1+ SEM +6)7")7

and both assertions (1) and (2) follow from the expansion of
(14 S(s)(M, + £)~")" " in a (uniformly in s for s in compact
subintervals) norm-convergent power series.
Hence by theorem A 1, there exists a unique solution
x,(t ) of the initial-value problem (13). Let it )
=(M, + £ )~ 'x,(t). By (13) &z, is continuously differentiable
and satisfies (10) with initial value u, given by (13b). By
uniqueness of the solution of (10), &,(t ) = u,(t ). Hence
M ut) is continuously differentiable, and the same follows
for Lyug(t) = Ly(M, + &)™ (M, + {)uolt) by (7). a
Theorem 1: Suppose that forall e Randve D (M ?)
nD (M), L (¢t vis continuously differentiable, [M (¢ ), L (¢ )jvis
continuous, and the following ‘“Lax pair equation” holds:

dL(t)
—
dt
Assume further that if u, is an eigenvector of L (0) corre-

= [M{t), L(t}]v (14)
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sponding to a (simple) eigenvalue £, then

uoe D(M3)nD (M,). (15)
[Notice that the latter condition is stronger than (8)]. Then
a4(L(t)) = a4(L(0)). (16)

Remark 1: Notice that by (6}, (7), and assumptions (A),
(B), (C), and (D),

[M(),L(t)]v
= [M,L]v+ [Mt),L,]v
+ [M,Ly(t)]v+ [My(t),Ly(t)]v

is well defined and is continuous in ¢ for allve D (M })
nD (M,). |
Proof:LetI, =(— T,T), T < «o. We prove that
o4(L(t))=o4(L (0)) for all ¢ € I,. By the same method, we
provethato, (L (t)) = o, (L (0)forallte I, = (T /2,37 /2)and
alltel, =(— 3T /2, T /2),and so on, until we arrive at (16).
SetB=L, +ia,a € R,a#0in Lemma A1 of the Ap-
pendix. By (7), {15), and Proposition 1, Bu,(t ) and Bu(t ) are
defined and continuous, and B is, by construction, defined
on D (L,) with a bounded inverse. Hence by (A1) of Lemma
Al, L (t)u(t) is continuously differentiable with

duq
dr’

uo(t) + L (t) (17)

d _dLt)
E(L(t)uo(t))— it

By (14) and (17), f(¢) defined by (9) is indeed continuously
differentiable and (11) holds. By the uniqueness part of
Theorem Al, f(t) =0V tel,and hence o, (L (0)Co,(L(t))
V t € I. Upon considering the proble, with initial value
to=tel," we obtain o, (L (¢))Co,(L (0)), hence
o L{t)=04L(0)Vtel a
Remark 2: When [M,M,(t )] is a bounded operator with
norm ||[M,,M,(t ]| <c < « with cindependent of ¢, the prob-
lem of existence and uniqueness of solutions of the initial-
value problem (10) may be treated by “interaction represen-
tation methods” (see Ref. 12, p. 283). These conditions are
not met, however, in the applications we shall consider.
We now present some examples.
(a) Sine-Gordon equation®:

x=L*R)e C*,
J 0\ d
L= 0L
_ (A@t) B(t)
Lyt)= (B(t) 0 ) (18b)
where

7= (O _ol)’ A(’)Z%((:V(x,z) ;V(x’t))’

o

B(t)= i(exmiu( xt)/2) 0 )
R exp( — iu( x,£)/2)/’
1 0)d 1 0
M, (0 _ 1) e 1= (0 1)’ (19a)
_(° Clt)
M) = (.D(t) 0 ) (19b)

2279 J. Math. Phys., Vol. 24, No. 9, September 1983

where

C(t)=2JB(t), D= —2B(tV, (20)
_ OGu(x,t) Au( x,t)
w(x,t)= T T (21)

and u is the real-valued infinitely differentiable global solu-
tion of the sine-Gordon equation (see Ref. 14, p. 25)
Fu  Fu .
¥—§+smu=0, — 0w <Xt< ® (22)

with the initial value

u(x,0)=f(x)eC¢, (23a)
ﬂ(x,O) =g(x)eC¢, (23b)
at

where C § denotes the Schwartz space of infinitely differen-
tiable functions of compact support. We see that

DIL)=DM,)=D(L(t))=D(M(t)
u
u

U
u

; u;u; absolutely continuous with

l

44 ¢ 1 YR ) forall i = 1,2,3,4.]
dx

Proposition 2: o4(L (t)) = o4(L (0)) for the sine-Gordon
equation in the above formulation.

Proof: We must verify (4), (5), (6), (7), assumptions (A)-
(E), (14), and (15). It is completely straightforward to verify
(4), (5), (6), (7), and (14). To prove (15), notice that by the
eigenvalue equation

L (Q)up = &oug,

it follows that u,; € C* (R ), with d" uy; /dx" € L }(R ) for all
integer n and all i = 1,2,3,4. This implies (15) because of the
explicit form (19a).

To show what is involved in the proof of assumptions
(A)HE), we compute

0 aC /dx
[M"MZ(')]z(—aD/ax 0 )
( 0o 2 d
—-2D 0/ dx

Fromtheabove form, [M, M, )]is(M, + £ )-bounded,'* with
bounds depending on the L> -norms'S of (Ju( x,t )/

dx)e* ™= and e+ “**) These functions of C* in x and ¢
under assumption (23) (Ref. 14, p. 45) and are continuously
differentiable in ¢ and uniformly bounded in ¢ for ¢ in com-
pact subintervals of R in suitable Sobolev spaces (Ref. 14, pp.
42-45). By the Sobolev embedding theorems (Ref. 14, p. 21),
these same properties hold in the sense of the L -norm. This
implies that assumption (E)!” and the proofs of (A){D) are
similar. a
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(b) Nonlinear Schrodinger equation®:

X=L*R)eC?
L =i (l +p O ) d ,
0 1—p/ dx
0 u( x,t ))
L= (
Z(t ) u( x,t ) 0 ’
where the bar denotes complex conjugate.
1 0\ 42
n=o(} )2
1 lp O 1 dx2
uu/(1 + p) z-gl
Myt)= —i P A
L — /(1 — p)

where p? > 0 and u is the infinitely differentiable global solu-
tion of the nonlinear Schrédinger equation (see Refs. 18 and
19).

. Ou | S u

1l —

2
+ ————(Guju =0
at x? 1~p2( )

with initial value
ul0x)=h(x)eCg.

We note that D (L) = D (L (¢)) = {(;);u1,u, absolutely
continuous; u}, u5 € L*(R)} and D (M) =D (M (t)) = {(2);
u;,u; absolutely continuous; u},u; € L *(R)}. Just as in Pro-
position 2 (but using the results of Ref. 15 and 16), we may
verify (4), (5), (6), (7), (14), (15), and assumptions (A)—(E) for
the above system and obtain the following.

Proposition 3: o4(L (t)) = o4(L (0)) for the nonlinear
Schrodinger equation in the above formulation.

APPENDIX

In this Appendix, we reproduce some definitions and
theorems used in the main text. As in the main text we shall
be working in a fixed Banach space X.

We shall denote by p(4 ) the resolvent set of an operator
AonX.Foreachte R, let 4 (t)generate a contraction semi-
group (Ref. 12, p. 235} on X. For each positive integer k, let
the approximate “‘evolution operators’ be defined by

U, (ts)=exp| — (t —s) A {{i — 1)/k)) if
(i — 1)/k<s<tgizk,  (1<igk)
and

U (t,r) = U (t,s)Up (s,r) if O<r<s<e<].

Theorem Al: (Theorem X-70 of Ref. 12). Let I be an
openintervalin R. Foreacht € I let A (¢ }be the generator of a
contraction semigroup on X so that O € p(4 (¢)) and (a) the
A (t) have a common domain D.

Bytheclosed graph theorem, 4 (£ )4 (s}~ 'isbounded and
we define

Clts)=A(t)A(s) ' — 1.

(b) For each ¢ € X, (¢t — )7 *C (#,5)@ is uniformly strongly
continuous and uniformly boundedinsand ¢ fort #slyingin
any fixed compact subinterval of 1.
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{c) Foreach ¢ € X, C(t )p =lim,,, (¢t — 5)~'C (t,5) exists uni-
formly for ¢ in each compact subinterval and C (¢ ) is bounded
and strongly continuous in ¢.

Then for all s<tin any compact subinterval of / and any
geX,

Ultslp = lim U, (ts)p

exists uniformly in s and ¢. Further, if ¢ € D, then
@, (t}=U(t,s)¢ € D for all t and satisfies

2Bl — a0 p=4,
and ||, (¢ }]|<]|¢|| for all £>s. |

Uniqueness is implied by the last inequality.

We also used the following Lemma. For a proof, see,
e.g., Lemma 1.3, p. 178 of Ref. 20. The word “function” is
understood to mean X-valued function.

Lemma Al: Let the closed operator A4 (¢ ) have constant
domain D (4 ) and be strongly continuously differentiable on
it. Suppose in addition that the closed operator B is defined
on D (4 ) and has a bounded inverse. Suppose finally that the
function f (¢ ) is continuously differentiable, and that the func-
tions Bf (t) and Bf’(¢) are defined and continuous. Then the
function 4 (¢ }f(¢) is continuously differentiable and

d _dA(t) df(t)

" (A (e)f() o fe)+A(r) o (Al)m

Definition Al: Let A and B be densely defined linear
operators on a Banach space X. Then B is said to be 4-bound-
ed if

(i) D(B)DD(4)and

(ii) For some a,b e R, and allp e D (4 ),

I1Bg [|<allde || + &g |-

We call a and b the “bounds of B with respect to 4,” al-
though this is not standard terminology.
If4 ~'eB(X)and |4 ~'||<a, it follows from (ii) that

|1BA ~'||<a + ba.

In the text, g and b depend on L~ -norms of some functions
h, and we have, therefore, inequalities of the form

1B (£)4 ~HI<[lA ()] -
Hence continuous differentiability of ||B (£)4 ~'|| [which is
stronger than the strong continuous differentiability re-
quired in (A)~(E)] is implied by continuous differentiability
ofhinL>.
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We present a family of dynamical systems associated with the motion of a particle in two space
dimensions. These systems possess a second integral of motion quadratic in velocities (apart from
the Hamiltonian) and are thus completely integrable. They were found through the derivation and
subsequent resolution of the integrability condition in the form of a partial differential equation
{(PDE) for the potential. A most important point is that the same PDE was derived through
considerations on the analytic structure of the singularities of the solutions (“weak-Painlevé

property”).
PACS numbers: 02.30.Jr

I. INTRODUCTION

The aim of this paper is to present a “hidden treasure”
class of integrable systems in two space dimensions. Given
the extreme rarity of integrable dynamical systems, which
has spurred an intense research in this domain, and the fact
that at least one example of integrable system belonging to
the aforementioned class was known since the beginning of
celestial mechanics, it is astonishing that these systems have
lain undiscovered for over 80 years.

In a 1901 paper, Darboux,' applying a method due to
Bertrand,” obtained the general partial differential (PDE)
which the potential must satisfy in order for the system to
possess an integral of motion quadratic in the velocities. He
then proceeded to specify and solve the equation in the gen-
eral case, while being aware of the possibility of the existence
of a particular case of integrability, the importance of which
he did not grasp at the moment. The incomplete former case
of the Darboux integrability was subsequently presented by
Whittaker? as “the only case of the motion of a particle in a
plane under the action of conservative forces which possess
an integral quadratic in velocities other than the integral of
energy.” However, the recent discovery by Greene* of an
integral of motion quadratic in the velocities for the Henon-
Heiles system, which can easily be shown not to belong to the
Darboux family, weakened the generality of the Darboux
solution. Actually, the most classical example of a non-Dar-
boux integral of motion is the third integral of motion for the
Kepler problem, which has been known for several centur-
ies.

It must be stressed at this point that integrability in our
case of two-dimensional systems means the existence of a
second integral of motion besides the energy of the system.
However, we explicitly demand that this second integral ex-
ist for every value of the energy. An interesting generaliza-
tion of the concept of integrability was obtained by Hall,® by
releasing this constraint. In his approach, one can also ob-

= The authors dedicate this work to their Soviet colleague, the mathemati-
cian and physicist Nahum Meiman.
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tain integrability for a larger class of systems, but only for
some specific values of the energy.

A first result of our work was presented elsewhere.® It
concerned a two-dimensional quintic homogeneous polyno-
mial potential which can be shown to lead to an integrable
dynamical system. The particularity of this potential was
that the associated equations of motion did not possess the
Painlevé property, which has been conjectured, and amply
verified, by Ablowitz, Ramani, and Segur,’ to be associated
with integrability. This entailed a weakening of the Painlevé
criterion for two-dimensional systems. We then proposed to
replaceit by a “weak Painlevé property,” which is not just an
artifice which allows us to explain the particularities of the
quintic potential; it has a real predictive power. In the case at
hand this property, suitable applied, allows us to derive a
PDE to be obeyed by the potential (Sec. 11I). This equation is
precisely the particular case of the PDE discovered by Dar-
boux that the latter did not investigate (Sec. II). In Sec. IV we
present the general solution of this PDE, and we display
some cases of particular interest.

Il. INTEGRALS OF MOTION QUADRATICIN
VELOCITIES

Let us consider the motion of a particle of unit massina
two-dimensional potential ¥ (x,y). The Hamiltonian govern-
ing the system reads

H = (x> +j°) + V (x,p). (1)
The equations of motion associated with the system are sim-
ply

x=-—ﬂE—Vx, jz—ﬂE—Vy. 2)

dx dy

For the complete integrability of the system, one needs
the existence of a second constant of motion, besides the
Hamiltonian itself. In this paper we will focus on integrals of
motion quadratic in the velocities, although integrals of or-
der higher than two are not unknown.®*® The general form
of such an integral is

C_;g(o)xz +g(l)xy +g(2)y2 + h, (3)
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where g and 4 are functions of x and y. No term linear in
velocities is allowed as the Hamiltonian (1) is invariant under
time reversal. The conditions of the constancy of C can be
written as

OE‘Z_? = g3 +g(y°’5czjf + g% +g‘y”X}32 1 g2%j?
(1) (235 -

+80 + 2%k + gk + g"p% + 267,
+hox+hp (4)

Regrouping and equating to zero the coefficients of each
monomial in the velocities, we obtain at order three

g0 =0, g0+l =0,

g +8d'=0, g'=0. (5)
The solution of this system of equations is straightforward:

g(O) —_ ayZ +By + ,)/’

g

g¥?=ax’+6x+¢.
At first order we obtain

h, +2¢%% + g =0,

h, +g"% + 2g% = 0. (7)
The integrability condition for A reads thus:

V= —2axy —Bx — 8y — ¢, (6)

aiy[zg(O)Vx+g(l)Vy] :%[g(l)yx+2g12)yy]’ (8)

or, equivalently,
28" — g*\V,, + (280 — gV,
- (2g£(2] - gfvl))V - g(”( Vxx

8 -V, =0 (9)
This is the equation found by Darboux,' which must be
obeyed by the potential for the system to be integrable.

The case analyzed by Darboux is obtained by using the
general solution (6) for the g'”’s, with the assumption a 0.
In this case one can, through the adequate translations in the
x and y directions, eliminate all the linear terms in (6). Fur-
thermore, we observe that y and ¢ in g© and g appear only
through ¥ — £ in (9). Thus one can take § = 0 without loss of
generality. This is by no means unimportant because { = 0
ensures that no term of the form 7y? with 7 constant will be
present in C. This means that C cannot be just a multiple of
the total energy unless it vanishes identically. Finally, a rota-
tion of coordinates can be performed to allow the elimina-
tion of € unless € + y* = 0, a case that Darboux also ig-
nored. In the general case, Eq. (9) becomes with a = 1

X9V e = V) + 02 = X2 + Y)W, + 39V, — 3xV, = 0. (10)
The solution of Eq. (10) was obtained by Darboux' as
V=f(u}) — glo)/(u? —v?), (11)
where 1 and v are given by
Wl =p’+y+p*+ 9P — 45
W=p*+y—llp*+ 71— 41"
pZ —_ x2 +y2,
and fand g are two arbitrary functions.
In the degenerate case y = 0, the singular limit of the
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solution is
V=G(p)+ P /x)/ p, (12)
where G and @ are also two arbitrary functions. If
€ + ¥* =0, Eq. (9) becomes
(xy £iy/2) Ve = V)
+ 0P =X+, +3yV, —3xV, =0,

the general solution of which is

V= (FLp* +(p* — 2¢2) "]
+Gp —(p*—22) W/ p* — 2%, (13)

with z = x + iy, and where F and G are again two arbitrary
functions. In the degenerate case y = 0, we recover the sin-
gular limit (12).

The case not analyzed by Darboux corresponds to
a = 0. Before proceeding to examine this case in detail, let us
deal with the particular case where, in addition, £ and & also
vanish. One obtains from (9), with = 1,

Vi + €V —V,,)=0.
If 4¢% + 150, the solution of this equation is straightfor-
ward. An adequate rotation reduces it to

Ve =0,
which indicates a separable potential

V=/rix)+gb), (14)

where fand g are two arbitrary functions. If e = + i/2, this
rotation becomes singular, the potential is not separable, and
the general solution is

V= +y)F(x £ iy)+ Gx + i), (15)
where Fand G are again two arbitrary functions. This poten-
tial will be called quasi separable.

We now turn to the case @ = 0 but 8 (or § ) nonvanish-

ing. Translations of x and y allow us to eliminate ¥y — { and €.
Putting A = — & /3, we obtain

oV, +3V.+x(V,, —V,)

+A[2xV,, +3V, —pV,, — V)] =0. (16)
Finally an adequate rotation of coordinates allows the choice
A =0, which eliminates x in the constant of motion, unless
A? + 1 =0, where this rotation becomes singular. (The
choice 4 = oo would correspond to eliminating j in the con-
stant of motion). The case A ? 4+ 1 = 0 will be treated in Sec.
IV. In the general case, we obtain

vV, +3V. +x(V..—V,)=0. (17)

Several solutions to this PDE can be found by inspec-
tion, and the general solution will be presented in Sec. IV.
One important class of solutions of Eq. (17) are the homogen-
eous polynomial solutions. They can be derived in an ele-
mentary way and turn out to be

Vo=1, V=2, V,=4"+x,
V,=28y>+4x%, V,=16p*+ 12x%? + x*, (18)
Vs =32 + 32x%° + 6x%, etc.
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As we explained in Ref. 6, the mere existence of the quintic
polynomial compelled us to weaken the Painlevé property
criterion of integrability.

I1l. PAINLEVE ANALYSIS OF EQUATIONS OF MOTION

Let us consider the equations of motion associated with
the integrable polynomial potential — V/2° [cf. Eq. (18)]:

X=20"x + x°,
(19)
P =50+ 3px* + 2x*.
A leading order analysis in the complex ¢ plane shows
that a possible behavior of the solution near a singularity is

xXyo(t —tg) 723,

This, in itself, is not yet incompatible with the original con-
jecture as x> and y° could have been pure poles. However, the
study of the resonances’ shows that this is not the case. There
is one resonance, namely 12, which is positive and not an
integer. This shows that (z — £5)*/*x has in general an alge-
braic singularity. However, the expansion of x and y does not
contain anything “worse” than powers of (t — #,)!/?, which s
still quite remarkable.

The fact that the occurrence of such “natural” algebra-
ic singularities does not compromise integrability suggests a
generalization of the ARS conjecture’ for two-dimensional
systems. We will say that a system has the “weak-Painlevé
property’’ whenever the solution, in the neighborhood of a
singularity at #,, can be expressed as an expansion in powers
of (t — t,)"”", where r is an integer to be defined below. The
new conjecture is now that two-dimensional integrable sys-
tems possess the weak-Painlevé property.

In order to define the exponent 1/7, let us consider a
polynomial potential of degree p + 2. The Painlevé analysis
proceeds in two steps. First, one studies the homogeneous,
highest order, part of the potential. Whenever the Painlevé
property is satisfied, one looks for lower order terms that do
not destroy it. Incidentally, the same two steps procedure is
used when one attempts a direct calculation of the integrals
of motion.

Thus, to begin with, we restrict ourselves to a homogen-
eous polynomial potential of degree p + 2. It is obvious that
the leading behavior in the neighborhood of a singularity
will be

xyo(t—to) 7P

Moreover, there is always a resonance at 2 + 4/ p, which,
except for p = 1, 2, and 4, is not an integer. Thus, there is no
hope for (1 — ¢,)*/ ?x to be regular. In general, the solution
will be an expansion in powers of (t — #,)'/ 7, which shows
that one can take » = p. Indeed, further studies'” have re-
vealed a need to refine the definition of the “‘natural” power
r. In this paper, however, the choice r = p is sufficient, as our
aim here is to study a specific family of ‘“‘weak-Painlevé”
potentials. In the following paper,'® we will deal with the
exhaustive search of weak-Painlevé integrable polynomials
of degree 3. Since the investigation is more and more cum-
bersome with increasing order, we do not try to be exhaus-
tive in the present work, but to show how useful the heuristic
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power of the weak-Painlevé property is.

Let ¥ be a homogeneous polynomial of degree p + 2.
We do not lose much generality by assuming that through a
suitable rotation, the coefficient of xy? * ! can be set to zero
while that of y?* 2 does not vanish. We write ¥ as

p+2

—_ kyp+2—k
V= — 3% aux'y? ,
k=0

with g, = 0. The equations of motion are

p+1

y= *Vy=k§_‘, (p+2—klaxtyr*i-k (20)
=0
pP+2

f= = Vo= 3 kapxt = lyrioh (21)
=2

In general, there are singularities in the neighborhood of
which both x and y behave as (£ — #,) ~ > 7. In addition, there
are singularities near which y still behaves as (£ — ¢,) ~*/7,
while x need not diverge that fast. Indeed, since a, vanishes,
the right-hand side of Eq. {21) need not diverge as
(t — t5) ~ 2~ *” but only as x(¢ — t,)~ %, whatever the behav-
ior of x is, provided it is Jess singular than that of y. Whenever
it happens thata, , ;, = Owhilea, , , #0, there willalsobe a
singularity where x behaves as (¢ — z5) ~ > # while y does not
diverge that fast. We must keep this possibility in mind, but
we will not treat x and y on the same footing as the rotation
has been explicitly chosen in order to have a, = 0.

Let us first consider the singularity in the neighborhood
of which y diverges as (f — #,) ~ /# but not x. Then Eq. (20)
fixes the coefficient of the leading term of y. We write

y=blt—10) " et — 1) ¥,
where e—0 as t—1,, and by equating the fastest diverging
terms we find
Ap+2b/p*=(p+2ah """
Since y must actually diverge as (t — ;) ~ /%, b #0 and thus
ayh ? =2/ p-.
The possible behaviors for x are determined by Eq. (21). Let
7 be the power dependence of x, i.e.,
X (t —t),
we find by equating the fastest diverging terms
Ny — 1) =2ab *.

A first necessary condition for the weak-Painlevé prop-
erty to be satisfied is that ¥y = 4/ p with u an integer (positive
or negative}. This gives the equation

4a,/a, = ulu — p). (22)

One must now compute the resonances.’ This is rather easy
since the problem separates into resonances for y, which are
— 1 and 2 + 4/ p, and resonance for x which are 0 and
1 — 2u/ p. We do not get any further conditions since we
already need u to be an integer. The only powers of (t — ¢,)
that will appear at the resonances are multiples of 1/ p. We
have not yet shown that no logarithms will get into the pic-
ture, but we are free of “nonnatural” powers of {f — #,), for
this type of singularity, at least.

We note that — 1 corresponds to the arbitrariness of ¢,
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and O to the arbitrariness of the coefficient of (t — £,)*/? in x.
The equation for a resonance 7 of y is only in terms of the
quantity N=(n — 2/p)(n — 1 — 2/ p). Sincen = — lisal-
ways a resonance, it follows that N, = (1 + 2 p) (2 + 2/ p)
satisfies the resonance condition; hence 2 + 4/ p is also al-
ways a resonance as we noted above. On the other hand, the
possible behaviors for x are (t — #,)*/?, where u satisfies Eq.
(22). There are in general two roots to this equation, related
by

u +u" =p.
Note that at least one of these roots is positive, thus strictly
larger than — 2, and the corresponding behavior of x is less
divergent than that of y. The fact that if x behaves as
(t — t,)*/?, the resonance is 1 — 2u’/ p expresses that

u'/p=1—u/p=u/p+(1-—-2u/p)
i.e., this resonance corresponds to the freedom of the coeffi-

cient of (f — #,)*"/ 7in x. In fact, this resonance is only actually
present if I

M:((" —2/p)n —_1 —2/p)+ Ve v

ull > ul > — 2;
otherwise, it is purely formal.

Let us now turn to the case where both x and y diverge
as(t—ty) " %7 ie,
x=at—t))"¥P + et — 1)V,
Y=Bt—1) P+ &t — 1) 7
where €, and €, go to zero as t—,. We choose the following
notation: Whenever ¥ or one of its partial derivatives has an
overbar, it means that it is estimated at x = a, y = . Then

we get the following equations for « and 3, by equating the

most diverging terms in Eq. (20) and (21):
22 +pla/p*= —V,,
22+pB/p*= —V,.

In general, this system can have several couples (@, ) as solu-

tions. For a given choice of (@, that satisfies Egs. (23), a

resonance n will occur whenever the determinant of the ma-
trix M vanishes, where M is given by

(23)

V., (n—2/pjn—1—-2/p)+ T/yy) ‘

Note that n only enters through the expression N = (n — 2/
p)(n—1—2/p). Again, n = — 1 is always a resonance;
thus N, = (1 + 2/ p) (2 + 2/ p) must be a solution, as can be
checked directly. Indeed, since ¥V, is a homogeneous polyno-
mial of degree p + 1,

Ve + ¥V =(p+ 1)V,.
Thus, for any couple (@, ) that satisfies Eqgs. (23),

aV +BV,y = —2p+2)p+1)a/p’=Na,
and similarly

aVy, +BV,, = —2p+2p+18/p'= —Np.
With the choice N = N, the matrix M becomes

Mo (_— /B, V., B ),

Ve —B/a)V,,

and its determinant indeed vanishes. This shows that 2 + 4/
p is also always a resonance as it leads to the same value N,

for N. The other value N, of N for which the determinant
vanishes obviously satisfies

N2+N1: _T/xx —'T/

yy*©
A second necessary condition for the weak-Painlevé proper-
ty to be satisfied is that &V, leads to resonances n that are of
the form s/ p, with s an integer. This can be written
—P'(Vex + V) =[5 = 2)s =2 —p) + 2 + p)(2 + 2p). (24)
This equation must be satisfied for some integer s for each
choice of a couple (a,8) that solves Egs. (23). The integer s
could very well depend on the choice of the couple (a,5). It is
in general difficult to find a/l the solutions to this problem,
even for small values of p. But one can find some solutions by
using a simplifying assumption. Sincea, = 0, ¥, hasno term
proportional to y?* !, and x thus can be factored out of V.
Then V, /x is a homogeneous polynomial in x and y of degree
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r
p, which is also true of V,, + V,,. The simplifying assump-
tion we will make is that these polynomials are proportional,
their ratio being chosen in such a way as to satisfy Eq. (24).
This is a very strong restriction. It implies that the reson-
ances are the same for all choices of the couple (a3 ), and this
is certainly not a necessary condition. Still, it will prove very
rich though not exhaustive. If we write

Vxx + Vyy =/{Vx/‘x’ (25)
Eq. (24) becomes

— APV /a = (s —2)s —2—p)+ (2 + 2p),
and since a and g satisfy Eqgs. (23)

22Q24p)=(—2—2—p)+2+p)I2+2p). (26)

Equation (25) leads to a recursion relation between g, , , and
a, . This recursion relation is

(k+ 2k + Ve, +(p+2—k)p+1—klg
=Ak+2a,,,. (27)
If A is a positive odd integer strictly smaller than p + 2,
there are no solutions with a,7#0, because the coefficient of
a; ., will vanish. Such values of A must be discarded. In
general, only a’s with even indices do not vanish, unless A is a
nonzero even integer strictly smaller than p + 2, in which
case a; , ; need not vanish, althougha, |, = 0. Thus the
polynomial Vis entirely determined by A, up to the multipli-
cative arbitrary constant a, or, in the special case above, by
two arbitrary constants ¢y and g, , ,.
From Eq. {27), the ratio a,/a, is given by
a/a,=(p+2){p+ 1)/214 - 1).
Comparing with Eq. (22), we see that A must satisfy
A=1+4+2p+2)(p+ 1)/[uu —p), (28)

with u an integer. The problem is now to find two integers u
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and s that satisfy simultaneously Eqgs. (26) and (28).

Ifpisodd,a, , , does not vanish, and there is no singu-
larity where x diverges faster than y. If p is even, on the other
hand, g, , | in general vanishes, and there will be such a
singularity, unless

2<A (even)<p + 2. {29)

A necessary condition for this singularity to be of the weak-
Painlevé type is

4a,/a, ,, = vlv —p),

with v an integer, in analogy to Eq. (22). From Eq. (27), this
can be written

vo—p)=2p+2)A —p—1) (30)
If p is even, one must thus solve (26), (28), and (29) or (30),
while (26) and (28) suffice for p odd.

For every p there are always at least two solutions to

this problem [note that solutions depend only on {s — 2)
(s — 2 — p) and u(u — p), v(v — p)):

i) u=p+2fr —2), s=0 {or p+4),
with A =p +2,

(i) u=p+1for —1)s=2p+4+6 (or —p—2),
with A =2p + 5,

as can easily be checked. These solutions, for even p, do lead
to integer values of v, p + 2 (or — 2), and 2p + 4 (or
— p — 4), respectively.
There might be other solutions for some values of p, but
none were found for small values of p exceptp = 1, u = 4 (or
— 3), 5 =2 (or 3), with A = 2. This leads to the following
potential:

V= ay’ + 3px?) + a;x°,
which is known to be integrable (separable).

Let us now consider the first solution. In that case there
is aresonance n = s/ p equal to 0. This should mean that one
of the coefficients a and S is arbitrary. Now, for even p, this is
true. Substituting A = p + 2 into Eq. (27) allows us to com-
pute ¥, and one finds

V= ao(yz +x2)p/2.

Thus only (@* + ) is determined and the occurrence of the
resonance # = 0 is normal. This potential is obviously inte-
grable. This case, however, is not as trivial as it seems, be-
cause one can now add a lower degree polynomial that need
not be rotationally invariant, without destroying integrabi-
lity. One thus recovers exactly the polynomial potentials of
the family found by Darboux,' which are indeed all even.
For p odd, on the other hand, the resonance n = 0 is patho-
logical, as it is not related to the arbitrariness of either a or 5.
If one solves Eqgs. (20) and (21), one finds

a=0, B=5b.

This is not at all acceptable, as @ may not vanish, since we
assumed that x does behave as (t — ;) ~ /7. Although we
found a “formal” solution to the arithmetical equations, we
do not have in this case a weak-Painlevé potential. In fact,
the vanishing of & entails here a logarithmic singularity. For
p = 1, this “pseudo-Painlevé” case has been noted before.'!
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The new and interesting case is

u= —1(or p+1),
with A =2p + 5,

n=2p46, or —p-—2),

complemented by v = 2p + 4 (or — p — 4) for even p. One
can solve the recursion relation Eq. (27) with a, = 27+ to
find

p+2—2k.k
2 Cp_ k>

Ay =
for 0<2k<p + 2,4, ,, =0.

This family of polynomials are indeed integrable. Note
that, here, these homogeneous potentials are already nontri-
vial. They coincide with the polynomials of Eq. (18). To see

that, we rewrite Eq. (25) as
x(Vee +V,,) =2p+ 5V,

and note that V is homogeneous of degree (p + 1), i.e.,
(p+ 1V, =xV,, +V,;

thus one recovers Eq. (17),
x(V,, — Vi) =2V, =3V,.

yy

The homogeneous polynomials we have found satisfy a
set of necessary conditions for the weak-Painlevé property to
be true. To check that they are sufficient, one should ascer-
tain that no logarithms appear at the resonances. This had
indeed been found to hold for some low values of p. It would
be straightforward, although increasingly tedious, to verify
this property for higher values of p. It will be even more
cumbersome, except for very small values of p, to check that
the only lower degree terms one can add without destroying
the weak-Painlevé properly are the polynomials that solve
the same Eq. (17). Actually these two properties (absence of
logarithms and superposition of solutions) are expected to
hold for all p, because Eq. (17) is just the integrability condi-
tion. There is no need to prove that rigourously. As a matter
of fact, the ARS conjecture is meant to be a heuristic tool
rather than a rigorous approach. In the case at hand it has
well served its purpose by leading to the same integrability
condition (17) as the direct approach.

IV. SOLUTION OF THE PDE TO BE SATISFIED BY THE
POTENTIAL

The solutions of Eq. (17) can be obtained in a variety of
ways (Fourier transform, use of characteristics, etc.). How-
ever, given the particular form of the equation and the intu-
ition stemming from the knowledge of particular solutions, a
direct approach appears simpler. We start by introducing a
new set of variables

p=+y)"2 =y (31)
A straightforward calculation obtains

V,, +2V,/p—V,, =0. (32)
We do away with the first-order derivative by introducing

U=pV.
There results the equation

v,—-U,,=0 (33)

which is the well known form of the wave equation. Its solu-
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tion reads

U=flp+n+glp—mn)
with fand g arbitrary functions. So the solution for the po-
tential ¥ becomes

V=I[f(p+n) +gp—np (34)

One can easily check from this form that this family of inte-
grable potentials cannot be contained in the Darboux solu-
tion (11), even though the intersection of the two sets is not
empty. Once the form of the potential is obtained, we can
integrate Eqgs. (7) and deduce the form of the integral of mo-
tion. We start by rewriting Egs. (7) with respect to the varia-
bles p and 7%:
h,=qV, —pV,, h,=7V, —pV,.
The integration is straightforward once one expresses V'
through Eq. (34), and we thus find

h=Up+nglp—n—(p—nflp+nlp.  (35)
The same results Eqgs. (34) and (35) would have been obtained
in a more systematic (and tedious) way by looking for the
characteristics of Eq. {17), which in view of Egs. (31), definea
system of parabolic coordinates.

In the special case A 2 + 1 = 0, Eq. (16) becomes

2ZV;; +3V; =0,

with z = x + iy, Z = x T iy. The general solution is

V=Fx+iy)/(x* +y)"> + Gx £ iy), (36)

where F and G are two arbitrary functions.

With Eqgs. (11){15), the results {34} and {36) complete
the answer to the question of the existence of an integral of
motion quadratic in velocities for the motion of a particle in
two dimensions. It is, however, instructive to examine some
particular families of solutions.

(a) Let us start with the potential

V=1/p.
This potential is manifestly contained in Eq. (34), and at the
same time, from Eq. (12), belongs to the Darboux family for
¥ = 0. Its Darboux integral is simply

Cy = (xp — px)’,
i.e,, the square of the angular momentum. However from Eq.
(35) another integral of motion can be computed

C, =px* —xxp +y/p
or
C, = x(xp — yx) + y/(x* + y*)'2
This just the y component of the quantity
FXL +r/|r|,

which is the third integral of motion in the case of the Kepler
problem. The existence of an additional integral in this case
is associated with the degeneracy of the problem, which is
manifested, for instance, by the separability in more than one
system of coordinates. From a physical point of view, the
usefulness of this invariant resides in the fact that it helps fix
the orientation of the orbit in the plane.

{b) Polynomial solutions: In Ref. 6, we already present-
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ed the homogeneous polynomial solutions of Eq. (17). Their
general form is
[n/2]

>

. Pl ZkC s B kxzkyn - 2k, (37)
k=0

where
Ck =09 =(n—k)Wkin—2k).
We can obtain them directly from Eq. (34) by choosing

fla)=(—1glg)=q"""/2. (38)

The general solution can be built from a superposition
of the homogeneous polynomials of each degree, due to the
linearity of Eq. {17). The simplest polynomial solution to Eg.
(17) (apart from ¥V, = 1) is, of course, ¥,/2 = y. This means
that a multiple of y can always be added to the potential. In
the case of polynomial potentials this fact is quite useful as it
allows us the freedom of a translation in the y direction with-
out the appearance of a linear term in the potential. A polyn-
omial potential case of particular interest is the Hénon—
Heiles potential for which Greene* obtained the second inte-
gral of motion. In this case of integrability, the Hénon—
Heiles potential reads

V=(4x> 4+ By)/2 + x* + 2)°.

It can be shown that this potential reduces to a superposition
of the potentials V,, V,, and ¥V, of Eq. (37) after the adequate
translation.

(c) Homogeneous solutions: If we allow negative values
of nin Eq. (38) one finds rational integrable potentials, which
can be related to the polynomials V, by

V_.,_,=(—=1"V,/x®+3
Inthecasen = — lonewouldhavef= —g=1/2and¥V_,
vanishes. In addition to this family of homogeneous rational
potentials there exists a second homogeneous family W, giv-

enby flg)=(—1)""'glg) = ¢" * /2, which can be related
between themselves by

W__,,_z =(_ 1)n+1Wn/x(2n+2).

For n>0, pW, is an homogeneous polynomial in x, y of de-
green + 1,and W_, is just 1/p.

We thus find two potentials homogeneous of order n for
all n, except n = — 1 where we have as yet only one since
V_, = 0. Actually, a second potential homogeneous of or-
der — 1 exists and is

Z=In[(p+y/(p—y)/p

n

or
Z =2 In tan(} arctan y/x + 7/4)/p.

This exhausts all homogeneous solutions of integer (20) or-
der.

V. CONCLUSION AND OUTLOOK

The main result of this paper is the identification of a
whole new family of integrable dynamical systems for one
particle in two space dimensions. This was achieved through
the derivation and resolution of a PDE to be satisfied by the
potential in order to ensure the existence of an integral of
motion quadratic in the velocities.
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The most important point is that this equation was de-
rived in two different ways. The first was a direct calculation
based on the search for a constant of the motion. The second
was through a suitable implementation of the “weak-Painle-
vé” property of the equations of motion, which we intro-
duced in a previous publication.® This constitutes a first evi-
dence of the usefulness of the weak-Painlevé concept.

In a companion paper'® we will have the occasion to
deal in more detail with this notion. We will actually show
that the weak-Painlevé property is a very efficient tool for
the identification of integrable cases. More precisely, we
were able to find a/l weak-Painlevé case for third degree po-
lynomial potentials, the integrability being confirmed in
each case by direct computation of the integral of motion. In
the case of fourth-degree polynomials, new cases of integra-
bility will be presented. Finally we will focus on the precise
definition of the weak-Painlevé property, and we will insist
on its conditions of applicability and the unavoidable *“cave-
at.”
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The weak-Painlevé property, as a criterion of integrability, is applied to the case of simple
Hamiltonians describing the motion of a particle in two-dimensional polynomial potentials of
degree three and four. This allows a complete identification of all the integrable cases of cubic
potentials. In the case of quartic potentials, although our results are not exhaustive, some new
integrable cases are discovered. In both cases the integrability is explicited by a direct calculation

of the second integral of motion of the system.

PACS numbers: 02.30.Jr

I. INTRODUCTION

In this paper we carry on our investigations on the inte-
grability of dynamical systems based on the generalization of
the Painlevé criterion we introduced in Ref. 1. In systems
with more than one degree of freedom integrability is of rare
occurrence. (Integrability, in the case of Hamiltonian sys-
tems, is defined as the existence of analytical, single-valued
integrals of motion, in number equal to that of the degrees of
freedom of the system, time independent and in involution.)
The detection of integrability has been greatly facilitated
these last years by the work of Ablowitz, Ramani, and Se-
gur.” They have conjectured, and verified in a multitude of
cases of physical interest, that integrability is intimately re-
lated to the analytic properties of the solutions of the equa-
tions of motion. Namely, whenever the solutions possess the
Painlevé property, i.e., their only movable singularities on
the complex time plane are poles, the system is integrable.
The reciprocal is also true, the Painlevé property having
been verified for the known integrable systems (eventually
after some, trivial or not, changes of variables). However,
although the ARS conjecture holds true for many (or infi-
nite) degrees of freedom systems, it became clear from the
results presented in Ref. 1 that some revision of the Painlevé
criterion was needed for two-dimensional systems. (Actual-
ly, for one-dimensional systems, the Painlevé criterion is su-
perfluous: They are integrable by definition). We discovered,
namely, a quintic polynomial Hamiltonian in two dimen-
sions, which did not possess the Painlevé property in the
classical manner while being integrable. The integrability
was ensured by the explicit calculation of the second integral
of motion. However, some regularity still persisted: The so-
lution in the neighborhood of a singularity could be ex-
pressed as an expansion in powers of (¢ — ¢,)!/>. This led us to
the introduction of the “weak Painlevé” notion as a criterion
of integrability. The “‘weak Painlevé property” was associat-
ed to an expansion in powers of (¢ — #,)'””, with r being a

* The authors dedicate this work to their Soviet colleague, the mathemati-
cian and physicist Salomon Alber.
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“natural’” power, determined solely by the dominant terms
in the equations of motion.

In the preceding paper, Ref. 3, we presented a first ap-
plication of the weak Painlevé concept. A partial differential
equation, obeyed by a certain class of integrable potentials,
was derived, based on the weak Painlevé property, which we
ensured in the easiest way through some simplifying as-
sumptions. The same equation was derived through a direct
search for integrals of motion quadratic in velocities, and its
solution provided a whole new class of integrable systems, to
which the quintic polynomial, mentioned above, belongs.

This twofold approach, integrability prognostication
based on the Painlevé criterion, and integrability verification
through a direct calculation of the constants of motion is
pursued in the present work as well. By deleting some of the
simplifying assumptions we had adopted in Ref. 3, we are
able to extend our study of integrability to a wider class of
potentials. However, as the calculations become very rapidly
prohibitively intricate, one is compelled to restrict oneself to
some low-order polynomial potentials. The aim of the pres-
ent paper is to present our results on third and fourth degree
polynomial potentials. The direct method for the search of
integrals of motion is first introduced in Sec. II. Sections ITI
and IV are devoted respectively to the study of third and
fourth degree Hamiltonians. Section V finally deals with the
definition of the ““natural” power we alluded to previously,
definition which is the comerstone of the “weak Painlevé”
property.

Il. DIRECT SEARCH FOR INTEGRALS OF MOTION

In Ref. 3 we presented a general method for the investi-
gation of the existence of integrals of motion quadratic in the
velocities, following Bertrand’s approach.* In the present
work we are going to focus on integrals quartic in the veloc-
ities. For the sake of completeness we start by sketching
briefly the case of a constant of motion cubic in velocities.

We start with a form:

C =/ + /%% + [0 + [ + goX + 8. (2.1)
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No even power in the velocities terms are allowed, as we
suppose that the Hamiltonian is invariant under time rever-
sal. The condition dC /dt = 0 leads to a system of partial
differential equations obtained by equating to zero the coeffi-
cients of each monomial x™y". We thus obtain

%:O, a_ﬁ)+%=0’ gfl__{._%_—.

Ix dy Ix dy  dx

W & _, S,

dy Ix dy
The solution to Eq. (2.2) is straightforward. The f;’s are cubic
polynomials in (x,y):

fi=ay' + BV + vy +6,

fi= —0Bay*+28v+vix+ e +Lly+, 2.3)
fr=0ay+ B —2eyp + §)x + Oy + &,

fi= —ax’ +ex* —Ox + A.

(2.2)

The next set of equations reads

. . 0
Yok +f+ 2o =,
ox

2k + 25+ B B (2.4)
dy Ix
o+ 35+ Broo,
dy

One replaces f; from (2.3) and X,y from the equations of mo-
tion, ¥ = — dV /dx, y = — dV /dy, and integrates for g,.
The compatibility condition for the integration to be possible
reads

3 .. . & . .
] (5% + 3fp) — xdy (2% + 2f2))
+ L+ s =0, 2.3
dy

Once the g; are obtained there remains a last equation to be
verified:

&X+8y=0 (2.6)
which, in view of (2.4), is a nonlinear PDE for the potential
V. So, for the system to possess an integral of motion cubic in
velocities, the potential must satisfy Egs. (2.5) and (2.6). This
actually can be realized in some cases, as, for example, the
Toda system,™® and will be the object of a future work. How-
ever, none of the systems examined in this paper fall into this
class and we are thus led to consider integrals of motion
quartic in velocities.

Let us look for an integral of motion of the form:

C=/foX* + /XD + [X0 + [%9° + f*

+ 8ok + g,%) + g7 + h. (2.7)
Again the first set of partial differential equations for f; can
be solved in a straightforward way giving:

fo=ay' + B+’ + 8y +¢

fi= —(4ay’ + 3By + 2y + O)x

+& + P+ 6y +p,
fr=(6ay’ + 30y + y)x* — (359 + 2y + O )x
+ oy + Ay + (2.8)
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fi= —(day + B)x* + (3y + n)x*
— 2y +Ax+w+ €,
fimax* =X +ux’ —vx + 0.
As we have explained in Ref. 3, the Hamiltonian, being a
constant of motion, can be freely added to C. The same ap-
plies to the square of the Hamiltonian as well, which allows

us one of the three choicese =Qoru =0o0ro =0.
The PDE’s for g, read

af +fy+ Bo g,

ox
3fl_§é+2f»'}+_a_g_0_+_a..g_1.—_
dy ox
(2.9)
i+ Y+ B
dy Ix
fi+afg+ %o,
dy

As in the case of cubic integrals, for Egs. (2.9) to be integra-
ble, the potential must satisfy a compatibility condition:

(2% + 3/3)

ax>dy
(% + 265) + % @k +/5)=0.  (2.10)

-b‘zg(ﬁx+4fd)+
X

33
 Oxdy?
Next, the equations for /4 are obtained:

2855 + g + oh _ 0,
Ix
(2.11)
g,x+2gj}+i}}—=0.
Iy
The compatibility condition for this last system reads:
2 (2o + 8) = - g,% + 26:9) 212
dy Ix
So an integral of motion quartic in velocities exists whenever
the potential satisfies the PDE’s (2.10) and (2.12), the latter
being a nonlinear one. The search is somewhat facilitated by
the fact that in all nontrivial known cases of integrable po-
tentials the £, are just constants, independent of x and y. In
that case equation (2.10) [and (2.5) as well] can be easily
solved. As a matter of fact, for third degree polynomial po-
tentials, Eq. (2.10) is automatically satisfied with constant
/[:’s while, for fourth degree potentials, Eq. (2.10) amounts to
just one constraint.

tll. THIRD DEGREE POLYNOMIAL POTENTIALS

As we have explained in the previous section, the inte-
grability conditions for the motion of a particle in a two-
dimensional potential take the form of a system of two
PDE’s, one of which is nonlinear. The search for the general
solution of this system would have been an unrealistic at-
tempt, given the complexity of the problem. One can look,
however, at cases of physical interest with potentials of form
simple enough for the problem to be tractable.
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In this section we will examine in detail the case of a
homogeneous polynomial potential of third degree. Our Ha-
miltonian can thus be viewed as a generalization of the
Hénon-Heiles one.” The general form of the potential (with-
in a global multiplicative factor which can be absorbed by a
proper rescaling of time or space) is

V=yp+ay’x + bx* + cx°. (3.1
This form can be somewhat simplified through a rotation. It
can be easily verified that one can almost always find a rota-
tion which allows one to eliminate the y°x term while pre-
serving the y* one. There exist just two exceptions:

V=x+i)
and

V= +y)x + iy). (3.2)

Incidentally, both potentials {3.2) are integrable. The first is
manifestly separable while the second belongs to the quasise-
parable case we introduced in Eq. (15) of Ref. 3. Both possess
a second integral of motion quadratic in velocities. From
now on, we limit ourselves to potentials of the form

V=yp +bx’y +cx’. (3.3)

A. Painlevé analysis of the equations of motion

We will very closely follow the calculations of Ref. 3.
The equations of motion are

y= —3y* —bx?%, (3.4)

X = — 2bxy — 3cx*. (3.5)
There are singularities in the neighborhood of which x and y
both behave as (r — ;) 2. In addition, there are singularities
where y behaves as (£ — #,)~ 2 but x does not diverge that fast.
Let us first consider the latter case. Equation (3.4) fixes the
coefficient of the leading term of y. We write

Y=ot —1)) 72+ elt — 1) 73,
where €0 as r—¢,, and by equating the fastest diverging
terms we find

6y = — 3y~
Since y must actually diverge as (r — #,) 2, ¥50, and thus
Y= —12

The possible behaviors for x are determined by (3.5). Let s be
the power dependence of x, i.e.

Za (t— Lo
we find, by equating the fastest diverging terms,
sis — 1) = 4b. (3.6)

We should demand that s be an integer because here weak
Painlevé and Painlevé coincide. However, if ¢ = 0, the equa-
tion for y contains only even powers of x, the equation for x
contains only odd powers of x, and the system can be written
in terms of y and x°. In that case, the Painlevé property may
be satisfied by x” rather than x, and this means that s may be
a half-integer but only for ¢ = 0. The search for resonances
does not lead to any new condition (Ref. 3).

Let us now consider the case where both x and y diverge
as (r—t,)% i.e.,
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x=alt — 1) + €&t — 1) 7,

y=Bt—t) P+ &t — 1)
where €, and €, go to zero as t—,,

The equations for a and 3 are

68 = —3B%—ba?, 3.7)

6a = — 2baff — 3ca’; (3.8)
again a may not vanish as x actually diverges as (f — #,) 2.
Thus (3.8) may be rewritten:

6= —2b8 — 3ca. (3.9)

In general, this system has two couples of solution (¢, ). For

each of them, a resonance n will occur whenever the determi-

nant of the matrix M vanishes, where M is given by

M ((n —2)(n — 3) + 288 + 6ca + 2ba )
B + 2ba (n—2)fn—3)+68/"

Note that » only enters through the expression

N = (n — 2)(n — 3). One solution is N = 12, which corre-

sponds ton = — 1 and n = 6. Indeed, using (3.7) and (3.9),

the matrix M becomes

—2b 2b
M= ( s > ) ,
2ba — 2ba’/P
and its determinant clearly vanishes. The other solution N’
for N satisfies:

N'+12= —(2bB + 6ca + 68).
Using once more Eq. (3.9), one finds
N' =(2b—6)p. (3.10)

The two choices of the couple (2,8 ) lead to two values of N .
Substituting a from Eq. (3.9) into (3.7), we find a second-
order equation for 5

B27¢* + 4b3) + B (54c® + 24b7) + 36b = 0.

Its solutions 3, and /3, are such that

54¢? 4 24b2 (2b — 6)4b2
+4= = -2 ———
bi+b 27¢* + 4b3 27¢® + 4b >
36b
b, = 272 + 4b3

The corresponding solutions N, and N, of (3.10) can be
straightforwardly shown to satisfy

N, +N,= —2(2b — 6)+ N,N,b /9. (3.11)

This can be further symmetrized by remembering Eq. (3.6)
and calling N, the quantity s{s — 1). There results

36(N, + N, + Ny — 12) = N,N,N,. (3.12)

A necessary condition for the Painlevé property to be satis-
fied is that V, and N, also be of the form p, (p, — 1) with p,
integer and i = 1 or 2.

Remember that s should also be an integer except if
¢ = 0, in which case s may be a half-integer. For any choice
of s or equivalently of b, N, = N, = 6 is a solution of Eq.
(3.11). However, this solution does not lead to a Painlevé
potential but rather to a potential with logarithmic singular-
ity which generalizes the well-known case of Ref. 8.

V=y*4 3x%/2.
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Besides this formal solution the only other solutions of (3.12)
up to the obvious permutations of N, N,, N, are

Ni=0, N, =0, Ny=12, V=3 +1x’, (3.13)
Ny=3 N, =90, N,=90, V=y’+ 3yx?/16(c = 0l),
(3.14)
Ny=2, N,=30, N,=30, V=yp+px3/2, (3.15)
Ny=2, N, =20, N,=90, V=y+px’/2 + ix*/6V3.
(3.16)

Permutations of ,, ¥,, N, are equivalent to rotations that
recover a = 0 where a is the coefficient of y*x in the poten-
tial. Note that one could have, through permutations, N, or
N, = 3. Inthat case, expansions of both x and y contain half-
integer powers of (¢t — #,) and superficially do not look Pain-
levé. However, the change of variables which recovers the
Painlevé property is evident, namely the rotation back to the
case N, = ? and the choice (y,x?) instead of (y,x).

The case N, = 12, N| = N, = 0, is not completely equi-
valent to (3.13) because the rotation that leads from one case
to another may be singular. The potential in that case writes

V=34 3x% + ux’.

The appropriate choice of u allows to recover all values of 4
in {3.13) except A = 0. Conversely, u = + 2i do not corre-
spond to any A. These two conjugate potentials are not really
separable. They enter in the quasiseparable class of Eq. (15)
of Ref. 3. Potentials (3.14) and (3.15) have been identified by
the La Jolla group.® The first has been integrated indepen-
dently by Hall'® and by Grammaticos, Dorizzi, and Pad-
jen,'! and the second has been integrated by Greene. '

The potential (3.16) is new. It is indeed integrable. The
second integral of motion will be derived in the next subsec-
tion.

This exhausts a// the Painlevé potentials of degree
three.

B. Direct search for the integrals of motion

As we have explained in Sec. II, the integrals of motion
for the potential (3.3) quartic in velocities correspond to con-
stant f;’s. (It goes without saying that the case of general f;’s,
as well as the case of cubic integrals, have been examined as
well. However, we will not burden the presentation by exhi-
biting these calculations which did not yield any positive
result.) With constant f;’s Eq. (2.10) is identically satisfied: ¥
and y are quadratic in x, p. So one can integrate Eq. (2.9) for
the g;, which gives

8o =f13%x + X/3) + (2, — 256 /3 + 4f:b /3 + /1),

g = fil3ex® + 3(b — 1lpx?] + £,(2bx*/3 + 2by*x)

+ £i[ = 3ey*x + (3 — b /3)%] — 4f,by°x,

82 = M,y + byx®) + fo(3cyx® + by’x)

+ (b + 2f5¢ + f1 — frb)x>.
Some integration constants have been taken equal to zero in
(3.17), anticipating the results from the application of the
compatibility condition (2.12). The latter applied to the g;’s
of (3.17) leads to the following system, when one equates to
zero the coefficient of each monomial x™y":

(3.17)
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Slb—3)b—45/2) =0,
105 *f, + 30chf, + (45¢2 + 13b — 43b2%/3) f, =0,
40b *f, + 30cbf; + 4b (b — 3) f,/3
+ (—90c + 60ch) f, =0,
— 60bcf, + ( — 45¢* + 762 + 9b) f5 + 30cbf,
+ £,(45 — 995 + 1862 =0,
(b — 3)(112bf,/3 + 30f; — 56bf,/3) =0.
The above system is linear in the £;’s but nonlinear in the
coefficients & and ¢ of the potential. The solution of this sys-
tem is straightforward but quite tedious. Seven distinct
(within a complex conjugation) solutions were found in all.
(a) =0,
(b) 6=3,
Those two solutions correspond to the separable potential
(3.13), the two forms being equivalent within a rotation of
coordinates which recovers ¢ = 0 in the potential. This case

generalizes the usual separable form of the Hénon-Heiles
potential.”

(c) b=3/16, c=0,
(d) b=45/2, c=178J14i.

One recognizes in (c) the form (3.14), while case (d) corre-
sponds to a rotation of (3.14).

(3.18)

¢ free,

¢ free.

e) b=1, c=i/6V3,
) b=5 c=22
(8) b=45/2, c¢=273/2i.

These three cases correspond to (3.16) and its possible rota-
tions. The only case which was not recovered in this analysis
and necessitated the inclusion of quadratic terms in the f;
was the potential (3.15), which corresponds to potential pa-
rameters

(hy b=1, ¢=0,
or, after a rotation
i) b=15/2, c=1Ti.

The fourth order integral of cases (a,b ) and (4,i) is trivial as it
is just the square of an integral quadratic in the velocities.
On the contrary case (c,d ) has a genuine fourth order
integral:
6

C=x* — x™x + Ixp — 3xY” — dex®.
(Here we have preferred to take f, = 0 and f,#0 in order to
alleviate the notations.)

The same is true for the potential

V=y+ % + (i/6V3)x>.

Its second integral of motion reads:
C=j* + 2052 — 233 /V3 + (4° + 2px* — ix’/3V3p?

+ (V3px? + Xy + (4y® — 2iV3yPx — ix?/3V3)?

+ 4y5 + 4y*x7 4 ix*y3/3V3

+ 5y2x*/4 + ix’p/6V3 + x°/54.

So every case of integrability predicted by the Painlevée
analysis was indeed recovered by the direct approach for the
computation of the integrals of motion.
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IV. FOURTH DEGREE POLYNOMIAL POTENTIALS

As in the previous section, we start by introducing a
homogeneous polynomial potential, of degree four here:

V=y*+ap’x + by*x* + cyx® + dx*, (4.1)
and we perform a rotation in order to eliminate the term y°x,
while keeping the term y*,

In analogy to the case of cubic potentials, this turns
out to be possible unless one deals with the potential

V=(x+iy)* +pb+y)x iy’ (4.2)
This is a potential of the quasiseparable class introduced in
Eq. (15) of Ref. 3. It is integrable and possesses an integral
quadratic in velocities.

The potential resulting from the rotation, however, is
still too general to allow for a complete investigation of the
domain of integrability. So in the case of degree four poten-
tials, we will not insist on the exhaustive nature of our analy-
sis, contrary to what was done in Sec. II1. In what follows we
will limit ourselves to potentials which are parity symmetric
separately in x and y, of the form

V =y* + ay*x* + bx*. (4.3)
Before proceeding further, we remark that, in this form, the

potential possesses two-well known integrable cases.® The
first one is the usual separable case:

V =yp* + bx*, (4.4)
which possesses an integral quadratic in the velocities. [In
the special case b = 1, the separable potential is still of the
form (4.3) after a rotation of 7/4, i.e., ¥ = x* 4 6x*? 4 y*]
The second case is the rotationally invariant potential:

V=0"+x% (4.5)
whose second integral of motion is just the angular momen-
tum. Actually, this potential is 2 member of the Darboux
family we introduced in Ref. 3.

A further case of quartic potential is encountered with-
in the new family of integrable potentials presented in Ref. 3,
and which possess integrals of motion quadratic in veloc-
ities:

V=y*+ % + fx*. (4.6)

J

_(ln=1)n —2) + 1287 + 2aa’
M_( 4aafS

Again, n only enters through the expression

N=(n— 1){n — 2), and N = 6 is always a solution corre-
sponding to n = -- 1 and n = 4. Indeed, using (4.11) and
(4.12), the matrix M becomes, with N = 6,

_ ( —4aa®  4aaf )
"~ \4a0p —4aB%’
The other solution N’ for N satisfies
N' +6= —(12+2a)B% —(2a + 12b)a> (4.13)

A necessary condition for the Painlevé property is that N’ be
of the form:
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4aaff )
(n—1)n—2)+2aB* + 12ba®/

A. Painlevé analysis of the equations of motion

The equations of motion are

j= —4y® — 2ax?y, (4.7)

X = — 2axy* — 4bx>, (4.8)
There are three kinds of singularities. In the first case, both x
and y diverge as (£ — ;) '; in the second case, y diverges as
(t — 1)~ ', and x does not diverge that fast while the reverse is
true in the third case.

Let us first consider the second case. Equation {4.7)

fixes the coefficient of the leading term of y. In analogy with
Sec. IIIA, if we define ¥ by

y=vit—1o)7 " +elt — 1),

with e—0 as #—¢,, we find

r=—t

The possible behaviors for x are determined by (4.8). Let
again s be the power dependence of x. We find

ss—1)=a. (4.9)
Here, since the equation is even separately in x and y, it
would suffice to satisfy the Painlevé property for x> and 3. A
necessary condition for this is that s be an integer or a half-
integer. A second necessary condition can be found by con-
sidering the third case of singularity described above. By
direct analogy, one finds

a/b=ulu-—1) (4.10)
with u an integer or a half-integer. Let us now consider the
singularity where both x and y diverge as (t — ;) ', i.e.,

x=alt—1t)"" 4+ €t —1) 7",

y=Bt—t) "+ elt—1)7,
where €, and €, go to zero as t—#,, and a and f3 satisfy

2= —4B7% —2aa?, {4.11)

2= —2af?— 4ba’. 4.12)
This system has in general several couples of solution (a,3).

For each of them a resonance will occur whenever the deter-
minant of the matrix M vanishes, where M is given by

N’ =y —1), (4.14)

for every choice of the couple (@, ) that solves (4.11) and
(4.12), where v is an integer that could very well depend on
the couple. However, a singularity of the second or third
kind with s or « half-integers, in a rotated frame, appear as a
singularity of the kind considered now with v a half-integer.
In order to recover them we will also accept half-integer
values of v.

The problem of finding all the possible values of 2 and b
that satisfy (4.9), (4.10), and (4.14) with N’ given by (4.13) for
every choice of a couple (@, ) that solves (4.11) and (4.12) is
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still very complicated. In analogy with what was done in Ref.
3, we will try to find some solutions with the help of a simpli-
fying assumption which is a slight extension of Eq. (25) of
Ref. 3. This assumption is that the quantity

(12 4+ 2a)82 + (2a + 12b)a?,

which appears on the right-hand side of equation (4.13), is a
linear combination, as a polynomial in « and B3, of the quanti-
ties 487 + 2aa’ and 2af3* + 4ba? that appear in Eqs. (4.11)
and (4.12), with coefficients A and u, which as a consequence
satisfy

12 + 2a = 44 + 2ay, (4.15)

2a + 12b = 2ad + 4bpu. (4.16)
Then, for any a and 3, and in particular any solution of the
system (4.11) and (4.12), the following will be automatically
satisfied:

N’ 4+6=21+2u.
The problem is now to choose a and b such that

2 +2u—6=yv—1) (4.17)

In that way, we will obtain only systems for which the reson-
ances are the same for every choice of the couple (@, ), which
is certainly not a necessary condition. Thus we don’t expect
this search to be exhaustive. Even the arithmetic system
(4.9), (4.10), (4.14) through (4.11), (4.12), is too vast to be
solved in all generality. Here are the solutions we have
found:
(a) s=3 u=4, v=4, A=0, u=09,
V=y"+3°x* + x*/16. (4.18)
This polynomial has been described in Ref. 3. It has a second
integral quadratic in the velocities.
b) s=2,
V=@ +x. (4.19)

This polynomial has also been described in Ref. 3 (for4 =0,
= 4). It is obviously integrable.

(e} s=3 v=17 A= -9, pu=33
V=yp*+3x* +x*/8. (4.20)
This polynomial was not known to be integrable so far. As

will be shown in the next subsection, it indeed possesses a
second integral quartic in the velocities.

d) s=3 u=17, v=7/2, A=139/40, u=32/5,
V=yp*+3’x* + 3x*/1088. (4.21)

Here v is a half-integer but so is 5. No rotation of x and y can
be found that would completely separate integers from half-
integers for all singularities at the same time. Thus, there is
no change of variable for which this system would be Painle-
vé. However, it could be “weak Painlevé” in the sense of Ref.
3.

u=2 v=2 A+u=4

u=3,

B. Direct search for the integrals of motion

The first compatibility condition (2.10) applied on a po-
tential of the form (4.3) gives

(@—2)f,+(2b—a)f,=0. (4.22)
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We first look for solutions with the f;’s constant; £, can be
taken equal to zero by adding to C the suitable multiple of the
square of the Hamiltonian.

Provided f;, a, and b obey (4.22), the equations for the g,
can be integrated to give
80 =fol4ax’y® + 4bx*) + fi(3ax’y + 4xy°) + £5(2 — a/3p,
&1 =fol —3ayx’) + f1[(3a — 6)x°* + (3 — a/6)x*]

+ fltaxy® + 4apx’) + f4(3 — a/6)y*,

8 =folfax") + £1(2 — a/3* + £33 axy’ + 4bxy).
Finally, the second compatibility relation is used to obtain a

system of equations for the £;’s, @ and b, the solution of which
gives integrable quartic potentials:

fila—6b)a—42b)=0,
ala — 6b)(2f, — f) =0,
2afs + fiW,la,b) =0,
Pla — 6) /2 +f1Wala,b) =0,
a(l —4a/3) fo + fiWsla,b) =0,
£ —a%/3 + 16a — 48) + £, W (a,b) =0,
£4(132 — 32a + 29a%/3) + f,Wa,b) = 0,

where the W,’s are rather complicated expressions in term of
a and b.

The solutions of system (4.24} is quite analogous to that
of the system (3.18). One finds immediately that the system
has a solution for

(4.23)

(4.24)

b=1 f,=0, i=234
The seven Egs. (4.24) with the condition (4.22) reduce then to
a(l —4a/3)=0, ala—6b)=0. (4.25)

—Thecase a = 0 corresponds to the separable potential
(4.4), the constant of motion being the square of a quadratic
constant of motion.

—Thecasea =6b,a=3,ie,a=3 b=},

V=y*+ix% + (4.26)
is just the new potential (4.20) provided by the Painlevé anal-
ysis. The constant of motion associated with it is written as

C =i + (24x%7° + 4xY)x? — 16x°piy + 4xY?
+ 4x8 4 16x5% + 16x%y°. (4.27)

However, no trace was found of a solution associated with
the potential (4.21) at this order, even with the general form
of the f;’s. This motivated an investigation of the existence of
a second integral of motion at order five or six in the veloc-
ities. We will not present here any of these cumbersome cal-
culations. Their result is that the potential in question does
not possess a second integral of motion up to order six. This,
in itself, does not exclude the existence of higher order inte-
grals. However, numerical studies of the surfaces of section
exhibit a completely chaotic behavior, which is the signature
of nonintegrability.

V. PRECISE DEFINITION OF THE WEAK PAINLEVE
PROPERTY

As we have seen, the nonintegrable potential (4.21) does
not have the usual Painlevé property. No rotation of x and y

Grammaticos, Dorizzi, and Ramani 2294



completely separates integer powers from half-integer ones
for all singularities at the same time, which would be neces-
sary for the system to be Painlevé in terms of the rotated x
and y*. However, according to the definition of Ref. 3, which
was only grossly stated at that stage, this potential appears to
have the weak-Painlevé property. Indeed, we said that for an
integrable polynomial potential of degree p + 2 the solutions
should be expansions in terms of (+ — #,)'", and we expected
there 7 to be equal to p. The leading behavior in the neigbor-
hood of a singularity is as (£ — #,) ~>/ 7, and one of the reson-
ances is always at 2 4+ 4/ p which makes p a reasonable can-
didate for the denominator of the natural power. Note,
however, that, while, for p odd, there is no other candidate
than p, for even p, p/2 is just as natural as p itself. In the case
of the potential (4.21), p is equal to 2, and we do have an
expansion in terms of {t — ¢,)!/2. On the other hand, for all
known integrable polynomials of even degree, the expan-
sions are really in terms of (¢ — ¢,)*/ ». This is actually the case
of the polynomials of the Darboux class® and also for the new
class described in Ref. 3 (in terms of x* and y rather than x
and y). Finally it is also true for the potential (4.20). Thus it
appears that, for even p, whenever an expansion is found in
powers of (t — #,)'/'#/?, the potential is integrable. On the
other hand, the case (4.21) above, which is associated with an
expansion in (# — £,)'/?, is not integrable.

This has motivated a further investigation. We perturb
potential (4.20) through the addition of a term that intro-
duces half-integer powers. The new potential is

V=y"+3*x* + Ix* + Ax. (5.1)
The addition of the linear term excludes the existence of a
second constant of the motion quartic in the velocities. In-
deed it is not possible to add to the constant (4.27) terms
dependent on A so as to recover a new constant for nonvan-
ishing 4. This does not entirely preclude the existence of a
higher order integral of the motion. None was found, how-
ever up to order six. Again, the nonintegrability of this sys-
tem has been confirmed by numerical studies of the surface
of section which exhibit large scale chaos.

As for the Painlevé property, the resonances are, of
course, not modified by the addition of a nondominant term.
One can check that the new term does not introduce any
logarithms at the resonances. The only modification is thus
the introduction of half-integer powers. So we have here a
second case where nonintegrability is associated with an ex-
pansion in terms of (t — #,)'/? with p = 2.

We can thus conclude with the following precise defini-
tion of the weak Painlevé property. We demand an expan-
sion in terms of rational powers of (¢ — ¢,). The denominator
of the rational exponent should be

p for odd p’s,
p/2 for even p’s,

where the degree of the polynomial potential is p + 2. Note
that this choice is rather more natural than always taking p
as denominator of the natural power because this is just the
denominator of the exponent of the leading behavior. Indeed
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the leading behavior being (¢ — #,) ~ %%, the denominator is p
when p is odd but is p/2 when p is even.

VL. CONCLUSION

In this work we have presented some new results based
on the complex-plane singularity analysis of the equations of
motion, using the weak Painlevé concept we introduced in
Ref. 1. The dynamical systems considered correspond to the
motion of a particle in a two-dimensional homogeneous po-
lynomial potential of degree three and four. The latter limi-
tation was imposed by the sheer complexity of the problem.
Two methods have been used in parallel in order to investi-
gate the integrability, Painlevé analysis, and direct computa-
tion of the integral. For the case of cubic interactions we
have reduced the condition for the validity of the Painlevé
property to a simple arithmetical equation of which we were
able to exhibit all the solutions, leading to novel cases. For
the case of quartic Hamiltonians, our search was not exhaus-
tive. It led, nevertheless, to the discovery of new Painlevé
potentials. The integrability was, in each case, demonstrated
explicitly through the direct calculation of the integrals of
motion. This search is performed systematically order by
order. It cannot thus constitute a criterion of nonintegrabi-
lity whenever it fails to give a positive result. However, the
nonintegrability up to integrals of order six for a quartic
potential which seemingly satisfies the weak Painlevé prop-
erty, combined with the “nonusual” way this property is
satisfied, makes the latter a serious candidate for nonintegra-
bility. This has led us into considering in detail the notion of
the “natural power,” which is basic to the weak Painlevé
concept.

So what emerges as a conclusion, from the results we
presented in this series of papers, is that the Painlevé proper-
ty is a most useful tool for the investigation of the integrabi-
lity of dynamical systems, which is far from having shown
the limits of its possibilities. Actually the implementation of
this property to dissipative two-dimensional systems ap-
pears to be within reach.
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l. INTRODUCTION

One of the fundamental properties of the Korteweg—de
Vries (KdV) equation

u, =6uu, —u,,, u=uxt), (1.1)

is that it has an infinite number of local conservation laws:
that is, there is an infinite sequence of identities
d,H,=dJ,, g=1.2,.
that follow formally from (1.1). (We write d, = 3/4t,
0=0/0x.) The “conserved densities” H, and “fluxes” J,
are elements of C[#'/7] = the set of differential polynomials
in u, i.e., polynomials in « and its x-derivatives u') = #(u).
Here is the charming construction, due to Gardner,’ of
these conservation laws. Consider another equation

(1.2)

w, = bww, — W, + 66 ww,, w=wx,t).

(1.3)

It is easy to check that if w satisfies (1.3), then u(x,? ), given by
the formula

u=uw+ew + ew, (1.4)
satisfies (1.1). Now, rewrite (1.3) in the conservation form
d,w= 903w —w,, + 26w, (1.5)

invert (1.4) (understood as an automorphism of differential
rings C[u"] [[e]]l>C[w'"] [[e]])

w=u+ 3P, P, eClw],

k=1

(1.6)

substitute (1.6} into (1.5), and identify €? -coefficients on both
sides of the resulting equality: you get (1.2).

What is the meaning of the Gardner trick? Notice that
under the homomorphism (1.4), conservation laws (1.2) for
the KdV equation (1.1) become conservation laws for the
Gardner equation (1.3) which, therefore, is also an integrable
system, that is, it has an infinite number of conservation
laws. Thus, starting with the KdV equation (1.1), we have a
curve (1.3) parametrized by ¢ in the space of evolution equa-
tions, and an integrable curve at that. Moreover, the map
(1.4) tells us that we also have a reduction of our curve, that
is, a regular map which sends any point on the curve into a
base point with parameter € = 0 and is the identity at e = 0

® Supported by NSF and the United States Department of Energy.
* Supported by NSF.
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{We do not distinguish between evolution equations and
their solutions; see, e.g., Ref. 2 for the spirit of algebraic
treatment of evolution equations.) It is, then, irresistible to
conjecture that (a) most, if not all, integrable systems cur-
rently in circulation (see, e.g., Refs. 3-5) can be included in
integrable one-parameter families, which we call deforma-
tions, and, moreover, (b) these curves carry with them reduc-
tions. There is some evidence available to back up this con-
jecture (see, e.g., Refs. 6 and 7), though it is not at all clear
what could be the underlying reasons for the existence of
such a general phenomenon.

The main result of this paper establishes the existence of
deformations and rational reductions for all the general
zero-curvature equations associated to simple Lie algebras.’
Details will be given in the course of the paper via the follow-
ing route: in Sec. II, we review the general zero-curvature
equations associated to simple complex Lie algebras; in Sec.
I11, we study two different coordinate systems on the tangent
bundle of the manifold of Cartan subalgebras of a given sim-
ple Lie algebra. We find that these coordinate systems are
related by a rational map. In Sec. IV, we interpret construc-
tions of Sec. III as providing deformations and desired re-
ductions.

Il. THE GENERAL ZERO-CURVATURE EQUATIONS

In this section, we summarize the Wilson construction
of the general zero-curvature equations.’

Let g be a complex simple Lie algebra, F a regular semi-
simple element of g, /a unique Cartan subalgebra containing
F, so that we have

g=/o[ gl =/®Ilmad F. (2.1
Let / = dim /denote the rank of g and let R C /* be the set
of roots of (g, /). For every a € R, let E,, be a nonzero ele-
ment of the corresponding root space, so that

(/8= e CE,.

Let u,,, acR, be differentially independent variables, and let
B = C [4Y] be the differential algebra of polynomials in
variables u!” with the derivation d acting on B through
du'?) = ul{ * V. We introduce a grading on B by setting

(2.2)

degu!? =j+ 1. Weset§ = B ® gand extend the derivation
C
d and the grading degtogbyd(l® g)=0,deg(1® g)=0.
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Define u = 3 u, ® E,,, which, for brevity, we shall
write as 2 u, E,. Let A be a formal parameter commuting
with everything; set

U= —u+AFeq. (2.3)
For Ve §[A], our general zero-curvature equations®
[0—-U,8,—V]=0 (2.4)

are equivalent to
du= —av+[UV]. (2.4)
These equations make sense if and only if the rhs of
(2.4") does not depend upon A and lies in [\,Z\g] =B %

[ 4 a]. Here is the full description of all possible V’s:
Fix a natural number r>>1 and an element v € £ Let

W= Yuvld
i=0
be a unique solution of the equation dW = [U, W] such that
v, is homogeneous of degree i. Set

V,ER, Uy=v 2.5

0

S pArl (2.6)

V=Yuvd"", V_=
i=0 i=r+1

From AW =V + ¥V_, we have

—aV+ [UV]=0V_—-[U¥V_], (2.7)
and since the lhs does not involve any negative powers of A
whereas the rhs does not contain any positive powers, (2.7) is
A-independent. Picking out the terms of order zero in A, we
rewrite (2.4') as
_vr,x+[u,vr] =[F,—‘U,+_1], (28)

which shows that the rhs belongs to [\Zg-,\] = ﬁn{\(m
Now denote by d, = d,(v,7) the evolutionary (i.e., com-
muting with d) derivation of B, which is defined by (2.8) via

u, =

d,(v,r)u, = a—component of [ F, —v,, ] in [%].
(2.9)

These are the equations we are going to deform. The
properties of these equations are given in the following pro-
position:

Proposition 2.1: (i) If v#0 then d,(v,7) #0. Thus we get /
linearly independent derivations for each r. (ii) Let K denote
the Killing form on g naturally extended to §, and set
H,=H(v) =s 'K (v, ,, F). Then the elements H,, s>1
are common nontrivial (i.e., they do not lie in B ) conserved
densities of all evolution equations (2.9) (that is, 3, H, € dB).
Thus we obtain / linearly independent conservation laws for
each s> 1. (iii) Equations (2.9) can be written in Hamiltonian
form

ar(v’r)ua = —alF) 611;1 ’

ac€R,
Su

(2.10)

—a

where 6/8u,, is the functional derivative with respect to u,, .
(See, e.g., Ref. 2 for the differential-algebraic version of cal-
culus.) Thus all derivations J, (v,7) (or corresponding
“flows”’) commute with each other.

The proofs follow from the general theory of Lax* equa-
tions. We shall not need them: our object of study is just Eqgs.
(2.4).

2297 J. Math. Phys., Vol. 24, No. 9, September 1983

Ill. MANIFOLD OF CARTAN SUBALGEBRAS

Let g be a simple Lie algebra over C, 7 the set of all
Cartan subalgebras in g. 5% is a homogeneous space for the
Lie group Aut (g) and we may regard 5% as a nonsingular
algebraic variety. In this section, we study relations between
two coordinate systems on (open piece of) 7#°. (To avoid any
confusion with the notations of the preceding section, the
reader would do well to ignore temporarily the existence of
Sec. II).

Let Fbe a semisimple element of g such that the dimen-
sion of the centralizer g* of Fin g is minimal; in other words,
Fis regular semisimple. Then / = g”is a Cartan subalgebra
of g, and the rank of g is given by rk g: = dim / We then have

Let 7 be the open subset of % consisting of all /'€ ¥~
satisfying the transversality condition /'n[ F, g] = {0}. We
define a smooth map P:5%#” —[ F, g] by requiring (F — P{ /"))
€ /" forall /' € 7. Then P (/") uniquely determines £ by
£ =¢" P/ provided F — P( /") happens to be regular se-
misimple; we denote by #°” the set of all such /' € % (for
which it does happen). Then € 7" [since F — P (/) = F]
and F"is open in ¥ (since #” = [7%” which is open in 57
N [{the set of all regular semisimple elements} which is open
open in g]). Therefore P is smooth and injective on the non-
empty open subset #" of 7. Since dim 77 = dim [F,g]

( = dim Im P), it follows that the differential P of the map P
is surjective at all points /" € #°".

Now let us consider the tangent bundle T(#") of "
Regarding P as providing a coordinate system for 7", we
identify T(Z°") with T( P( #"))=P (") X[ F, g], the tan-
gent bundle of P (#"). Denote the coordinate system thus
obtained on T ( ") by ( P,P,)e P(5") X [ F,g].

Another coordinate system { P,u) on P( 57"} X [F,g]
may be defined as follows. Any w € g determines a holomor-
phic vector field X, on 7 as the generator of a one-param-
eter family of diffeomorphisms exp (7 ad w) restricted to #*:

for any fe C (),
(X, )W) = lim 77" [f(explad rwl)lf) = (/).

The map w X, is a Lie algebra homomorphism. Denote
by X,,(£")€T ,.(#) the value of X, at /. Then
X, (£") = 0iff wes”. Thus the correspondence

(£ Xe AL NHAP L )u), ue[F,g]
defines our second coordinate system on T{#"").

Our goal is to connect these coordinate systems. To ob-
tain a connection between ( P,P, ) and ( P,u), consider a holo-
morphic curve y:B—5°" defined on an open ball B C C
containing zero. Put P(r) = P (y(r)) for r € B, set P. = P(0),
P, =dP(r)/dr|,_,,andlet( P,u)correspond to( P,P,). For
the Cartan subalgebra y(7), when 7—0, its general regular
semisimple element near F — P [recall that g ~ ¥ = #{0)] can
be written in two different forms (according to the two coor-
dinate systems introduced above) as

F—P_7P +0(7),
and
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F—P+7[F—u,F—P]+0(r)
=(expad 7(F— u))(F — P)+ O (7).

Since ¥(7) is commutative, we have
[F-P—7P ,F—P+7[F—u,F—P]]=0(r),

or, putting

T:=ad(F—P), 3.1)
we get
TP —u)=T(P,) (3.2

We shall now analyze the correspondence
( P, P.)( P,u) given by (3.2), and we regard F as variable as
well (we shall need this later). We note that the results below
require only the assumption that g is a simple Lie algebra
over a field & of characteristic zero, and in such a context we
formulate our statements (one often needs & = R rather than
k = C. We want to cover this case as well).

The following lemma from linear algebra provides the
basis for our analysis.

Lemma 3.1: Let L be a vector space over a field k, with
fixed basis wy,...,w,. Let r be an integer with 1<r<n, and
consider the algebraic variety

M= {(T,T")€End L XEnd L |rank T'<r}.

Define an element 4 € k [M']( = regular functions on
M) by

AT, TYw, N\ ANw,
=TT wA--ATT'w, Aw, . ; A Aw,. (3.3)

(Both sides lie in the one-dimensional space A "( L ) with the
basic vector w, A--Aw,.) Thenthereexists " ek [M] ®,
End L such that

T'TT" =T'A (3.4)

ink[M] &, End L [in other words, considered as a regular
function on M with values in End L, T " satisfies
T'rTT" I, T')=T'4(T,T")].

Proof: Write TT 'w, = X]_ |a;w;, 1<i<n, where a;
€ k [M]. Define the matrix a = (a;),;;.,, then 4 = det a.
Next we take the matrix @’ = (a';),; ;.. such that
ad’ =ad'a=A1,,sothata’;, €ek[M]. Set, for 1<i<r,
w, =2/, a,w,s0Aw, =3_, a; ;. Now we can define
T (for the fixed TTand T') by T "w; = T 'w;, 1j<r,
T"w, =0, r<j<n. Since, for 1<i<r, TT'w; = TT'%]_,
a,w =2_,a;TT'w; = 2] _,a'; 2} _ aw;
=27, dyauw, (mod L,:=kw, ; + -+ kw,) = Aw,
{mod L,), we have, again for 1<i<r, T*'TT'w; =T"
(Aw,mod L,) = T"(Aw,;) = AT "w;, = AT'w,. Thus
(I'"TT' — AT')=0onL": = kiv, + - + kiv, and since
Aw,eL’,weget (T"TT’ —AT')4 =0on
L"=kw,+ - +kw, Nowrk T'<r,soT'(L)=T'(L").
Thusifd #0,thenT"TT' — AT' = O0onL.But Misirredu-
cible, and A is regular and not identically zero on M. There-

fore T"TT' — AT '=0 always.
Q.ED.

We now use Lemma 3.1 in the situation: L =g,
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r=dimg —rkg,and T, T' on M are given by
T=ad(F— P), T' =ad Fwhere Pe g and F € g is regular
semisimple. If F is regular semisimple, i.e., dim g = rk g,
and [F, g] n g~ % = {0}, we choose a basis w,,..., w, in g in
the following manner: take w,..., w, such that [F, w, ],
...,[ F, w, ] are linearly independent (we can do this since Fis
regular so dim (Im ad F) = n — dim g* = 7}, then
IT'w, = T([Fw)),... TT'w, = T ([ F,w, ])arealso linearly
independent (since [F,g] n g ©~ * = {0}). Now choose com-
plementary vectors w, , |,...,w, such that 4 #0, see (3.3).
Now define, via Lemma 3.1, the element

S=A4"'T"T (3.5)

Claim: S is the projection of g onto [ F, g] along g ~”.
Indeed, ST' = A "'T"TT' =A 'AT' = T’, thus S
=IdonIm T’ = Im ad F. On the other hand, ifyeg*
= Ker ad(F — P) = Ker T, that is, Ty = 0, then
Sy=4 "'T"Ty =0. To sum up, S is a rational function of
( F,P) € g X g defined whenever dim gF = rk g and [ F,g] n
g" "=1{0}.

Applying this claim to our basic equation (3.2), written
in the form

P, =S([F—P,P—ul), (3.6)

we get P, as a regular function on the following Zariski-
locally-closed subset Z of g X g X g:

Z:= [(F,Pu)|dimg“ =1k g; Pue [ Fgl;
[Fg]l ng" P =[0}}. (3.7)

Denote by Y the analogous set of ( F,P,P, ) obtained by re-
placing u by P, in (3.7).

Now let Q be the projection of g onto [ — P, g] along
g” ~ *. Then, as above for S, Qis a rational function of ( F,P ) €
g X g defined whenever F — Pis regular semisimple (perhaps
we should stress that in all matters unrelated to our problem
of connecting coordinate systems, we treat ¥ and P as free
variables).

Turning back to our basic equation (3.2), we rewrite it
with the help of Q as

T(P—u)=Q(P,) (3.8)
Since ad F is an isomorphism on [F,g] = Im(ad F'), we can
define P’,u' €[ F,g]by P=[F, P'l,u=[F, u']. Then
P—u=T'(P'— u')and we have, by Lemma 3.1,

AP—u)y=AT'\P' —u')=T"TT'(P' —u')

=T"T{P—u)y=T"(Q(P)
This shows that « is a regular function on the Zariski-locally-
closed set

Y':=|(FPP,)e Y| F— P)isregular semisimple}

(recallthat 4 #0o0n Y ). DenotingZ’' = {{ F,Pu)e Z|(F — F
is regular semisimple}, we collect the results of this reason-
ing in the following theorem.

Theorem 3.2: The maps Z— Y, given by (3.6}, and
Y'—~Z’, given by (3.8), are regular. In particular, our basic
Eq. (3.2) determines an everywhere-defined birational corre-
spondence Y'«>Z".

Now we can analyze different asymptotics connected
with the correspondence Y'«Z".
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Theorem 3.3: (a) Fix a regular semisimple Foand P, P, €
[Fyg] Set F=¢€~'F,. Thenu = P + O (€) as e—0. (b) Fix a
regular semisimple F € g and P, P, € [ F,g]. Set P = vP,,
P_ = vP,,. Then [Fu] = W([F,P)] — P,,) + O(V), as v—0
(equivalently, u = v(P, — (ad F)~' P, ) + O (v*), where
(ad )~ 'isanisomorphismon [F, g] 3 P,, ). (c) Fixaregular
semisimple F e g and let /= g“ be the corresponding Cartan
subalgebra with root system 4. Then the determinant of the
Fréchet derivative of the linearization of the map (P,P, }—u,
is given by

[T —ea(F)~'. (3.9)
aed

Proof: (a) In all three cases we use the fact that by
Theorem 3.2, u is rational in the parameters involved: in the
present case, as a function of €. Let us write then

u = €(uy, + O (€)) with some s<0 and require #,7#0 for s <0
(we thus allow u, = O for s = 0, taking care of the possibility
of u having positive s-asymptotics in €). Rewriting (3.2) in
long hand, we have
[ad(e 'Fy — P)1°[P — €{uy + O e))]

= [ad(e™'F, — P)]IP, =0 ) =0(c ).
This yields

(ad F,)’u, =0 if s5<0,

(ad Fo)P—up) =0 if s=0.

But ad F,, is nonsingular on [F,, g] which forces u, = 0 for
5 <0, a contradiction with the choice u,#0 made for s <0.
Thus s =0 and P — u, = 0, proving (a). (b) For v—0, write

u = v(u, 4 O (v)), where s<1 and u,#0 for s < 1. Then, as
above, (3.2) can be rewritten as

[ad(F — vPo)1(vPy — u) = v FP,. ] +0(),

which yields
(ad Fu, =0, if s<l,

(ad FY}(Py — ug) = (ad F)P,, if s=1,

which forces, as above, s = 1 and P, = [F, P, — u,]. (c) If
u = f{ P,P,)is a locally smooth map with 0 = £(0,0), its lin-
earization / { f) (at zero) is defined by
u=1(f)(PP,):=(d/dv) f(vP, vP.}|,_,. By (b), we get

u =P, — (ad F)~' P, . Choose a nonzero vector E in the
root space g, for every root @ € A. Then we can rewrite the
above formula as

i, =Py —a(F)~'P,, . (3.10)
Now recall that the Fréchet derivative of any map ¢ given by
a nonlinear differential operator of the form u, = u,(v{™),
1<i<n, 1<j<N, isan n X N matrix D (¢ ) of differential opera-
tors, defined by

du,
Dig), =% igm 9= 4
dx

m>0
(m)
ay;

Thus for the case (3.10), we get the matrix-
diag(..., 1 - a( F)~'d,...), which implies (3.9).
Q.E.D.
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{V. EVOLUTION EQUATIONS

In this section we construct deformations of Eqgs. (2.4).
The idea is to interpret them as defined on #°" rather than
on g.

We begin by recalling some simple notions from the
calculus. Suppose N is a manifold (smooth, like everything
else in this section), let D (V) denote the set of all vector fields
on N [that is, derivations of C *(N ).] Consider separately R'
with the coordinate x and vector field d /dx. f Xe D (N ), a
(local) trajectory of X is a map y:/ ' — N such that

—a;i— y* =y*X, [I' isanintervalin R, (4.1)
X

understood as the equality of operators on C *(N ) [with val-
ues in C *(I ']. If one chooses a (local) coordinate system
Wy )on Nand if X = Zg,(v)d/dy;, then (4.1)is equivalent
to the familiar form of a system of ODE’s:

dy*(y,
v = y*g,), I<i<n. (4.2)
dx

If the field X depends upon parameters g ,,...,., (x may be
one of them), definition {4.2) works equally well.

What we need is a bit more. Suppose X and Y are two
families of vector fields on &, and they both depend upon
two parameters which we denote x and ¢. Consider
I? = I"'XI"'withthesecoordinates x and ¢ and fix two vector
fields d = d /dx and 9, = 3/3t on I

Definition 4. 1: A trajectory of the pair X, Y is a map
y: 1% — N such that

d
I y* = p*X, (4.3)
d
> y* = y*Y. (4.4)

Definition—Proposition: Let X = X (u) be a family of vec-
tor fields on N depending upon parameters p = (i ...,y )-

Then the set of operators X, : = g—X ,1<i<k, defined by

i

X, (h)= %X(h , heC=(N),

is again a family of vector fields on N with parameters .
Proof: Differentiate, with respect to u;, the equality
X(hihy) = h\X (ho) + hoX (hy), hyhye C2(N).
Proposition 4.2: A trajectory ¥ for the pair X, Y can be

drawn through every point (x,f,n)€I*X N [i.e., ¥(x,t) = n]if

and only if
[X9Y] -Xt+Yx=0’ (45)

as operator on C *(N).
Proof: The only integrability condition for y is

9 43=9
2 4= (44,

as follows, e.g., from writing (4.3), (4.4) in local coordinates.
We have then

d d d

——y¥* = _y*Y — (y*Y *X,
Frirt i (Y*Y )X + y*X,
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3 . 3 .,
Ll = oy (1*X)Y + p*Y.,
Evarg E g (Y*X)Y + p*Y,

SO
r*[X,Y]-X, + Y,)=0.
Q.ED
We remark in passing how to transform (4.5) into a
more familiar form. Consider N: = N X I? and extend natu-
rally on N vector fields X, Y, d and d,, continuing to denote
them by the same symbols. Then (4.5) can be written as

[0+X8,+Y]=0. (4.6)
It is obvious now how to proceed. Rewrite (2.4) as
[-U,-V]-(=U)+(=V)=0, (4.7)

and consider the representation of g in D {(#°"), as in Sec. I11.
Applying proposition 4.2, we see that (4.7} is the integrability
condition for the system

a
_—ax Yr=7r*—Xir_.) (4.8)
G ==Xy, (49)
at

for u = u(x,t ) fixed. Applying Theorem 3.2 to Eq. (4.8}, we
find « (or rather — u) as a rational function of P (y). This
enables us to eliminate u in favor of ¥ in (4.9) which thus
becomes our deformed equation, if we define the deforma-
tion parameter € as — A ~'. Indeed, Theorem 3.3(a) then
yields that — u = P(y) + O (¢), thus — P(y) (or — y)is the
deformed variable [analog of w in (1.3)].

Proposition 4.3: Deformed Eq. (4.9) is not equivalant to
undeformed one (2.4) under any change of variables.

Proof: Use existence of the reduction (4.8). If (4.9) were
equivalent to (2.4), the map w—y which inverts (4.8} (under-
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stood as a rational map y—u by Theorem 3.2) will be a (finite)
differential operator. In particular, its linearization will in-
vert the linearization of (4.8). Therefore the Fréchet deriva-
tive of this linearization will invert the Fréchet derivative of
linearized (4.8). Taking determinants, we get a differential
operator which inverts expression (3.9), which is a differen-
tial operator of positive order [since a(F)z=0foracA], a
contradiction.

QED.
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A sequence of numerically tractable higher-order parabolic approximations is derived for the
reduced wave equation in an inhomogeneous medium. The derivation is motivated by a definition
of waves propagating in a distinguished direction. For a homogeneous medium these definitions
are exact and yield uncoupled, infinite-order parabolic equations which are equivalent to the wave
equation. The difficulty of obtaining higher-order parabolic approximations for the elastic wave
equation in an inhomogeneous medium is also discussed.

PACS numbers: 03.40.Kf

I. INTRODUCTION

This paper presents the derivation of a sequence of in-
creasingly accurate parabolic approximations to the reduced
wave equation. The derivation has two parts. First, a distin-
guished direction is assumed to be defined by the excitation
of the medium (e.g., by an incident pencil of light) and func-
tions that approximate waves propagating in both senses of
this direction are defined. The sum of these functions is the
full field within the medium. Next, a pair of coupled equa-
tions for these functions is derived. This pair is a first-order
system in the distinguished direction and is equivalent to the
reduced wave equation. Parabolic approximations result
from neglecting the coupling terms in this pair.

The problem of identifying waves propagating in a giv-
en direction in a nonuniform medium was first discussed by
Bremmer.' Motivated by this work a rederivation of the
Leontovich-Fock approximation,” ang several related ap-
proximations, were given in Ref. 3. The most accurate para-
bolic approximation to the Helmholtz equation was derived
in Ref. 4. The results derived here, though less accurate,
appear to be more amenable to numerical integration than
those in Ref. 4.

Parabolic approximations to the elastic wave equation
are also discussed. Further justification for some of the re-
sults in Ref. 5 is given, and the difficulty of obtaining higher
parabolic approximations to the elastic wave equation is dis-
cussed.

Il. DEFINITION OF WAVES PROPAGATING IN A
DISTINGUISHED DIRECTION

Consider the Helmholtz equation
AV (x)+ k*(x)¥(x)=0 2.1)

when k %(x) = k 3, k 2 const. Solutions of (2.1) can be written
W(x)= [ 677 — k31 4. 22)

Equation (2.2} expresses ¥ (x) as a superposition of plane
waves. Each plane wave component satisfies (2.1) with
p* = k. Thefunction 4 (p) depends upon the boundary con-

* Permanent address: Department of Mathematics, University of Nebraska,
Lincoln, NE 68588.

2301 J. Math. Phys. 24 (9), September 1983

ditions of the problem. If the boundary conditions single out
a particular direction of propagation (e.g., an incident pencil
of light singles out the direction along the incident beam), it
is of interest to define functions that are good approxima-
tions to the components of the wave propagating in either
sense of the distinguished direction.

Assume the distinguished direction is the x, axis and let
2, denote the x, component of momentum and R = { p,, p)
denote the momentum transverse to p,. For the boundary
conditions of interest the amplitude factor 4 (p) will contain
only small contributors due to R. Thus an approximate de-
composition of ¥ (x) into upward and downward waves is
sought when 4 (p} is a sharply peaked function of p,.

To obtain this decomposition first define x, = (x,, x;)
and in (2.2) integrate with respect to p,. The result is

¥ (x) =f{A *exp[ilky — R?)"x,]
+ A" exp[ —ilk2 — R, ]} d R (2.3)

This representation of ¥ suggests the definition

'4 i(x):fA *exp[ + ik} —Rz)”le]em'xldzR,

(2.4)
where ¥ * are the upward and downward components, re-
spectively, of ¥.

Now from Eq. {2.3} it follows that

‘llxl(x) zfl(ké — R Z)I/Z{A + exp[l(k(z) —R 2)]/2)61]

—A4 " exp[ —i(k3 — R})"x,]}e™ " d R,
(2.5)
where the subscript x, denotes partial differentiation. By as-
sumption, the region of interest is p} ~k 2;i.e.,, R 2/k 2 ¢1.
Thus,

(k3 —RYVZ=ko(l —~ R*/2k2 —R*/8k} — ). (2.6)
Using the fact that

fR N4 * exp[ +ilkd — R?Y)V2x,1e™ ™ d?R

= — (AL)NJA * exp[ +iki — R}, )™  d R,
2.7)
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where
&F d’
ax:  axd
it follows that Eq. (2.5) can be written as
172
7} v, (x)= (1 + ;‘741) f{A * exp[itk3 — R)"x,]
0

IRy

A, =

(2.8)

— A~ exp[ —i(k3 — RY)V2%x,]}e" ™ d?R. (2.9)
Combining Eqgs. (2.3) and (2.9) and using Eq. (2.4), it is now
seen that

W () = ¥+ (Vikg)[1+ (1/k3)4,] 7129, ).
(2.10)

Equation (2.10) provides a technique for approximating
¥ *.LetS ;! denote the first N + 1 terms in the formal
series expansion of [1 + (1/k2)4,]~ /% and define

Wi =4[V+(/ik)S;'W,]=DiW

Now the operators D i approximately project out the +
components of ¥so that ¥ § ~¥ * with the accuracy of the
approximation increasing as N—cc.

Ifk *(x) = k 3(1 + 7(x)) and 7(x) is small and slowly var-
ying, the definitions (2.11) should continue to represent a
good approximate decomposition of ¥ into upward and
downward components. A more nearly exact sequence of
definitions of 4 components would be obtained from the
expansion of [k %(x) + 4,]~!/2.* However, due to the lack of
commutivity of k %(x) and 4, it is not apparent how to expli-
citly express these definitions short of a spectral analysis of
[k %x) + 4,171

Having settled on definitions of ¥ * for a medium with
small and slowly varying inhomogeneities, the next step is to
obtain coupled equations for the components. This is done in
the following section.

(2.11)

lil. DERIVATION OF HIGHER ORDER PARABOLIC
APPROXIMATIONS

From the definitions of ¥ * given in Eq. {2.11), it fol-
lows that

v=vF+¥y (3.1)
and

Y, =ikSy(¥y —¥y) (3:2)
for N=0,1,2,-- . In Eq. (3.2), Sy denotes the first ¥ + 1
terms in the formal series expansion of [1 + (1/k2)4,]"/2
To simplify the notation, the subscript N will be deleted from
ensuing calculations in this section. The final results can be
interpreted by appending subscript N to all functions ¥ *
and operators S.

Differentiating Eq. (3.2) with respect to x, and using Eq.
(2.1) to eliminate 32¥ /3x} yields

ik =S¥ — ¥ 7) = ~ [+ 4, + V)

X1
(3.3)
Operating on Eq. (3.2) with ik,S produces
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iko—a—S(W+ — V)= —kISHPT—¥T). (34
ax,
Adding and subtracting Egs. (3.3) and (3.4) and rearranging
terms yields the system

[2ik0:9£?_s+k2(x) +4, +k352]w+

X1
= — [k¥x)+4, —k252|¥ ", (3.5a)
[2l'kois—k2(x)_4l —k3S2]W‘
dx,
= [k2x)+ 4, —k2S*]¥+. (3.5b)

The system {3.5) is equivalent to Eq. (2.1), and has the advan-
tage that a parabolic approximation to the system is easily
justified. To see this, display the approximate phases of ¥ *
by writing

Pt = ptoxiken, (3.6)

Substituting (3.6) into Eq. (3.5) yields

[2ik03‘9_s+ k2x)+ 4, — 2k2S + k3s2]v+

X
= — [kz(x)+Al —k(z)Sz]e_Zi""“v_, (3.7a)
[ZikO%S—— k2x)— A4, +2k3S— kéSz]v_
1
= [k Ix)+ 4, — k(z,Sz]eZ"“”"v“L. (3.7b)

The parabolic approximations for v * are obtained by sup-
pressing the reflection terms in Eq. (3.7); i.e., replacing the
right-hand sides of the equations with 0. This approximation
is valid since v* and k *(x) vary slowly relative to e * .,
Thus, the parabolic approximations for v+ are

2ikoaisi k2nx) + 4, + k2(S — 12]o* =o0.
Xy

(3.8)
If S is chosen to be .S,
S=5=1,
then Eq. (3.8) becomes the Fock approximation
[2ik0 9 ki) a4, ]voi —o0. (3.9)
ox,
To obtain a higher order approximation, set
S=S,=14(1/2k3)4,,
which yields
. d i a
2iky— + kinx)+ A4, + —4, —
[ de,_ on(x)+ 4, %o Laxl
1
+ A, Vv =0. 3.10
o A (3.10
In the limit N— o0, with
S=85_ =(1+A4,/k2)"?,
the systems (3.5) and (3.7) become
[2iko-2-5. +2k3 4 k3nix) 24, |w 2
X
= Fhinmw ¥ (3.11)
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and
[2iks 25 + 243 £ k3mp F 2K3S.. 24, oz
Xy
= FkinxjeTHyF, (3.12)
For a homogeneous medium, 7==0, and the equations un-
couple, yielding

(ikos5. k3 x4, )0z =0
X1

and
(iko—aa—Sw 4 k2 FALS, iAl)vf —0.

X

IV. THE ELASTIC WAVE EQUATION

The time independent elastodynamic wave equation for
an isotropic medium is

(A + 2u)V(Veu) + (VA )(V-u) — £V X (VXu)
+ (V) X (VXu) + 2[(Vi)}V]u + po’u = 0, (4.1)

where A and y are the Lamé parameters, p is the mass den-
sity, u = u(x) is the elastic wave displacement, and

X = (x,X5,X;)€R * is a point in the medium. If A,u, and p are
constants then solutions of (4.1) are given by

uxi= [ [ ( ki [AlppIpS(p* — k3)

+ [A(p) L [A(p)-p]p}&pz —k %))e""'* dp, (42)

k%
where
ki =pa?/ A +2p),
k3 =pw*/u,
and
2 _
P =pp-

Asin Sec. I, A(p) depends on the boundary conditions of the
problem. The integral of the first term in the integrand in
(4.2) is the longitudinal wave u; and the second term yields
the transverse wave u;. Assuming the distinguished direc-
tion of propagation to the parallel to the x, axis, Eq. (4.2)
yields

u = ulj’ +u, (43)
where
u )= [ [A£ (kT — R 2pyp)
xexp{ +i[(k} —R?"x,
+ pX; + p3x;]} dp.dps, (4.4)

and

A (popaps) = M1/kiki —R?)
[A( £ p1p2D3 ) £ Puip2p3) £ p1:P2P3)s
(4.5)
and
R?=p; +p}.

In this representation, u;* is the upward or forward moving
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component of the longitudinal wave, and u;” is the down-
ward moving component. Similarly,

ur =uy +uf, (4.6)

where

uf (= [ [AF (K3 - R pp)
Xexp{ +i[(k} —R?Y"*x,
+ pyX3 + psx;]} dp.dps, (4.7)
and

AF (pipaps) = H1/k: — R?)
X [A{ £ p1p2ps) — (/K NA( £ py1pasps)
{ £ P1P2PIN £ P1sP2p3)]- (4.8)

In the same manner as in Sec. IL, the + components of
u; and u; can be written as

1 ._,du

u =%(uL L ) 4.9)
L 1
1 du

ui =%(uT iIST_I axT ) (4.10)
T 1

The operator S, is given by
S = [1 +(1/k2L)AL]1/2

= lim S , (4.11)

where Sy isthefirst N + 1 terms in the formal series expan-
sion of S} . Also,

Sot=[14(1/k3)a, ]

= lim S 3. (4.12)

N—o
The operator Sy  is defined similarly, with k; replacing k,,
in Egs. (4.11) and (4.12). Notice that Egs. (4.9) and (4.10)
imply that
ik St — ) =2 (u +ur), (4.13)
ox,

tky Sr(uf — uT_)=a—i-~(uT+ +uy ). (4.14)

1
In the same manner as in Sec. III, Eqs. (4.9) and (4.10)

are used as definitions of u/™ and ujt for the case when 4, u,
and p are not constant. Write

A (x) = Aof1 + 4 (x)), (4.15)
p(x) = po(l + f(x)), (4.16)
pIx) = po(1 + p(x)), (4.17)

where A,, 110, and p, are constants, and define

ki = po*/ Ao + 2u0),

k1 =pow’/po
as the constants which appear in Egs. (4.9)-(4.12). The func-
tions 4, i1, p in Eqs. (4.15)—(4.17) are assumed to be small and
slowly varying.

Now write

u=u i+ u,j + usk, (4.18)
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where i,j,k are unit vectors along the x,,x,,x, axes. Since the
distinguished direction of propagation is parallel to i, assume
that

u ~ui (4.19)
and

Uy = uoj + uzk. (4.20)
Similarly, assume that

nt =ufi, (4.21)

uf =~uiFj+ uitk, (4.22)

where
u, =u," +u,

for n = 1,2,3. Now if the approximations
SL=SLo =1,
St =810 =1

and (4.21) and (4.22) are used, then Eqgs. (4.13) and (4.14)
become

tkyfui™ —uy )= ‘i(ux+ +u)
ox,
el — )= 2 ), =23,
7 J axl J J

which is the (7)) splitting introduced in Ref. 5, Sec. 2. This
provides additional justification for that splitting, along with
the heuristics given in Ref. 5, Sec. 3. A careful examination
of (4.5) and (4.8) shows that the assumptions (4.19) and (4.20)
are validonly to O (k ;” ')and O(k 1 '). Consequently, the ap-
proximations to u;* and ui will not be improved by consid-
ering higher-order approximations to S} and Sy in (4.13)
and (4.14) such as S\ ,, St ,, etc.

V. CONCLUSION

The system of equations (3.5) [or (3.7)] has two types of
coupling terms. There are couplings due to 77(x) (the inhomo-
geneity of the medium) and those due to k 3 and 4, and their
combinations. These later terms are present even if 7(x) is
zero. Thus, for finite N, couplings (interpreted as reflections)
exist even in homogeneous media. This unphysical feature is
an artifact of the approximate identification of upward and
downward waves. In the N— o limit, Eq. (3.12) results. In
this case the only coupling is due to inhomogeneities in the
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medium. This is an important feature of (3.12) shared with
the results in Ref. 4. It appears that (3.11) and (3.12), though
less accurate than the parabolic approximation in Ref. 4, are
more tractable. Both results fully take into account what
might be called the kinematics of the propagation, i.e., those
factors which for finite N yield the spurious (or “kinemati-
cal”) reflections discussed above.

Notice that (3.12) can formally be written

[2iko—a—¢2ks L2K3S, + kés:n(x)]vf
X

= F kS '[nix)exp( £ 2ikox, w7 . (5.1)
If 5(x) = O, this becomes

[ k3 + 4, ] 2w =0 (5.2
ox,

This agrees with a result in Ref. 6 for the homogeneous case
and with Ref. 4.

The results for the elastic case are much less satisfac-
tory. The reason for this is that it is necessary to decompose u
into polarization components as well as upward and down-
ward components for each polarization. This prevents the
derivation of higher parabolic approximations. However,
the results presented here further justify the derivations in
Ref. 5 of equations that describe the dominant features of
propagation of elastic waves in media with small and slowly
varying Lamé parameters.
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This paper presents a new method of construction of solutions to nonlinear, nonelliptic systems of
partial differential equations and especially nonhomogeneous ones. These equations have been

considered from the point of view of integral elements. In particular the connections between the
structure of the set of integral elements and the possibility of a construction of special classes of
solutions have been studied. These classes consist of what is called simple waves and k waves (for
homogeneous systems) and simple states (in the case of nonhomogeneous systems). They provide
us with a possibility for a selection of simple integral elements from the set of all integral elements.
Analyses have been performed using differential forms and Cartan theory of system in involution.
The problem has been reduced to examining Pfaff forms. The Cauchy problem for Pfaff systems
has been formulated and solved using the Riemann function. Some remarks concerning the notion
of Biacklund transformations for the case of k waves have been formulated. It is shown that, in

contrast to simple wave, the simple state has no gradient catastrophy. The technique presented of

Simple waves in quasilinear hyperbolic systems . I. Theory of simple waves
and simple states. Examples of applications

constructing the solutions in form of simple states has been illustrated by the examples of
Korteweg and de Vries and four-dimensional Klein—-Gordon, sine-Gordon, and Liouville
equations. It has been shown that the known soliton equations are closely connected with the
elliptical functions and especially with the P~Weierstrass functions.

PACS numbers: 03.40.Kf, 02.30.Jr
I. INTRODUCTION

This paper is a generalization and continuation of pre-
vious papers'? concerning nonelliptical system of partial dif-
ferential equations (p.d.e.) of the first order with the analyti-
cal coefficients of the type

a;*‘(u',...,waixwf(x) =bu',...u'), (1)

where
x=x'..,x" €&, ulx)=(u'x),.,u'x)ecH,
s =1,..,m is the number of equations,
u = 1,..,n is the number of independent variables,
j=1,...,1 1isthe number of unknown functions.

The system (1.1) is a nonhomogeneous one with coeffi-
cients dependent on the unknown functions (even when
m>!). The Euclidean space & —the space of independent
variables—is called the physical space, & = R", while the
space H—the space of values of dependent variables—is
called the hodograph? space, H = R'. Let us assume that the
initial conditions for the system (1.1) are smooth, i.e.,
uylx)s C{R"~1).

We are looking for solutions describing the propagation
and nonlinear interactions of waves which can be realized in
the above systems.

Such solutions are of particular interest in such do-
mains of physics as field theory, electrodynamics, mechanics
of continuous media, plasma theory, quantum theory, and
the theory of relativity. As is illustrated by the examples in

*'Partially supported by NSF under Grant No. INT 73-20002, A-01, for-
merly GF-41958.
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the text, they cover a wide range of the wave phenomena
arising in the presence of external forces. These phenomena
are described by systems of equations of the form (1.1) or
systems which can be reduced to that form by introducing
new unknown functions.

The methodological approach accepted in this work is
based on the generalization of Riemann invariants.*® Lately
this method has been extensively developed by M. Bur-
nat®>~'! and next by Z. Peradzyfiski'>"'® and W. Zajacz-
kowski.'”'® The results obtained for the homogeneous sys-
tems were so promising that it seemed to be worthwhile to
try to extend this method and check its effectiveness for the
case of nonhomogeneous partial differential equations. This
is in short the aim of the present paper.

1l. HOMOGENEOUS AND NONHOMOGENEOUS SIMPLE
INTEGRAL ELEMENTS

The starting point for this paper is to make an algebrai-
zation (according to papers" ') of the considered system of
Eqgs. (1.1). Partial differential equations (1.1} can be written
as follows:

o . .

ye {Li:a¥*L’ =b°}.

Definition 1: The matrix L/, satisfying the above condi-
tions at a given point u,e H we shall call an integral element
of the system (1.1).

The matrix L = || du’/3x*|| is a matrix of the tangent
mapping®' du(x): & — T, H given by the formula:

Ju’
Ixt
Tangent mapping du(x) determines an element of linear

& 3(0x*)—(6u’)eT, H, where 6u’ = Sxt .
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space L (¥, T, H ), which may be identified with the tensor
product T,H ® &* {where €* is the space dual to &, 1.e.,
space of linear forms A: & —R '). As is well known?? each
element of this tensor product is a finite sum of simple ten-
sors, i.e., L = y® A, where Ac& * is a covariant vector and
yeT, H is a vector tangent to H at the point u.

Definition 2: The integral element L7, is called a simple
element, if the rank |[|[L/,| = 1, i.e., when the corresponding
tensor is a simple one.

To determine a simple integral element L, we must find
such a ye T, H and A€ * which satisfy
@ yIA, = 0 S for a homogeneous system, ] 2.1

b* for a nonhomogeneous system,
s=1l,.,m u=1,.n j=1,.,0

Simple elements of the system (2.1) will be denoted, re-
spectively, ¥ ® A for the homogeneous system [that is, when
b (u)=0], and 3, ® A ° for nonhomogeneous system [when
b (1)=£0). The existence conditions for simple integral ele-
ments can be derived directly from their algebraic represen-
tation. Thus simple homogeneous elements are directly con-
nected with the existence of characteristic vectors. Namely,
the necessary and sufficient condition for the existence of a
nonzero solution y of Egs. (2.1) is

rankjla¥ 4, || </ (2.2)

The relations (2.1) and (2.2) are called the wave relation
and the dispersion relation,'? respectively. If the covector A4
satisfies the dispersion relation (2.2), then there exists a po-
larization vector yeT, H, satisfying the wave relation (2.1}.
Thus there exists a relation between directions ¥ and 4. Con-
versely, the vector y for which there exists a A such that (2.1)
holds will be called a characteristic vector.

The conditions of existence of the nonhomogeneous
simple integral elements are determined by the Kronecker—
Cappela theorem. Namely, the necessary conditions of exis-
tence of a nonzero solution ¥, of the system {2.1) is

rank||(@¥ A %, &°)|| = rank|{(a A ).
For example, if m = [ and if the determinant

det(a}* 4 2)#0, we can determine the polarization vector ¥,
by

(2.3)

Yo = (aj-“/lg)_'b‘ (2.4)
and so the vector y,€T, H is the function of the variables
(u, A%)e H X &* Hence H X £*D(u, A% —>y,lu, A% e T, H.

Now we will show that the simple integral elements can

“be used for constructing solutions of the system (1.1). These

solutions can be interpreted as a propagation and nonlinear
interaction of many simple waves on the simple state. For
these purposes let us remind the notions of simple wave and
simple state.

HI. SIMPLE RIEMANN WAVES

Now let us introduce the notion of the simple wave and
simple state. These notions will provide us with a tool for an
extraction of the simple integral elements from the set of all
integral elements. Let the mapping u: D —H, (DC &) bea
solution of the system (1.1).

Definition 3: The solution of the system (1.1) is called a
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simple wave (for a homogeneous system) or a simple state (in
the case of a nonhomogeneous system) if the tangent map-
ping du(x) is a simple element at each point x,€ D.

In other words, the derived mapping [the tangent map-
ping dulx)] of a simple wave (or a simple state) is a simple
integral element.

In that case it follows from the rank of the mapping
theorem®” that u(D ) C H is a one-dimensional submanifold,
i.e., some curve I". Let R— f(R )e H be a parametrization of
I". Then u(x) = f(R (x)), where R (x)is ascalar function called
Riemann-invariant. Since du’/dx* = (df’/dR ) IR /Ix",
then for the homogeneous system (1.1) the tangent vector

d
d—Rf(R)=7(R)€Tf(R.H (3.1)
is a characteristic vector. Let A (R ) be a characteristic covec-
tor related to (R ). Since u(x) satisfies Eqs. (1.1), covectors
proportional todR (x) are related to #(R ). Let us assume that
the following equality holds:

dR (x) = £ (x) A (R (x)).

When rank|| ¢ /|{ = n — 1, the above assumption is
automatically satisfied. That is a typical (i.e., generic) case
for the system when we have more equations than indepen-
dent variables (m > n).

Now we prove that there exists a function @ of one vari-
able such that the following equation holds: R (x) = ¢ (& (x)),
where 7(x) = 4,,(R (x))-x* is the phase of a simple wave. In-
deed dZ(x) = (1 + £dA, /dR -x"*) A,, dx*; thus
d? NdR = 0,sothat R (x) = ¢ (£ (x))in the neighborhood of
the points where d 7 (x) does not vanish.

On the other hand, let us consider a smooth curve I
u = f{R )in the space of hodograph H with the tangent vector
YR ) =df/dR.

Theorem 1: Let the curve I" of the class C ' be such that
vector ¥{R ) given by condition (3.1) is a characteristic vector.
Let also 4 (R ) be the characteristic covector related to ¥(R )
and @(-) be an arbitrary smooth function of one variable.

If the system

u(x) = f(R (x)),

R (x) = @(4,,(R (x)}-x*) (3.2)

can be resolved with respect to variables #,R [i.e., u = u(x),
R = R (x}}, then the function u(x) is a solution of the homo-
geneous system (1.1), i.e.,

j
a Ou’ =0. (3.3)
Ox*
This solution is called a simple wave (Riemann wave).
Proof: Differentiating (3.2), we get*?

4
R , = A (R),
' 1—¢(dA,/dR)x* w )

(3.4)
A "
1 —cp(d/l#/dR)-x"y .
where ¢ (4, (R ) - x*)(dA,,(R)/dR ) - x* 3£ 1, which is just the
condition of a local resolvability of the system (3.3). Then
u’ .(x)isasimple element of the system (3.3)at the point u(x)

uj_x#(x) =fj’R Rou =
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of the form:

du’

Ixt
where the quantity §5£0 is considered as a variable depend-
ing on x. Thus, by virtue of the relation (2.1), the function of
the form u/ = f/(R (x)) is a solution of Egs. (1.1). It is well
known?? that the Pfaff system (3.5) is a completely integrable
one. Q.E.D.

The form of the solution (3.2) suggests that a covector 4

should be treated as an analog of the wave vector (w,k),
which determines the velocity and the direction of the propa-
gation of the wave. However, unlike the case of linear p.d.e.,
here (w,k) depends also on the value of the solution; there-
fore, the profile ¢ of the wave is changing during its propaga-
tion.

dulx}=£&yeA, e, —§(x)y u,A)A,u), (3.5

IV. SIMPLE STATES

In Refs. 1 and 2 it was proved that there exist solutions
of the system (1.1) for which the derivative du(x) of the map-
ping u are the nonhomogeneous simple elements:

dulx)=y,®A°% where ary{i) =b", (4.1)
AC=A0(u)dx"€&*, yo=1v,u,A° €T, H.

In contrast to the condition (3.5) defining the simple
wave in the homogeneous system, the expression (4.1) does
not include a function £ of the variable x, and, moreover, the
conditions, of integrability are not automatically satisfied.
The Frobenius theorem imposes certain conditions, so-
called conditions of involutivity, on the form of the covector
A %in the formula (4.1). The conditions of compatibility {that
is, the symmetry of the second derivatives—Schwarz
lemma) are of the form d (du(x)) = dy, AA° + y,®dA ° =0,
modulo Egs. (3.6), where??

d7/0 = yo ,,'dui = y() Yo ®/{ O’

dA%=du'A /l° =A°NA°,.
Namely, the system (4.1) has a solution (is completely inte-
grable)if' 1°, A1°=0

It means that the direction of A ° is constant along the

field ,, and then by renormalization A °— ad °, ¥, —(1/
a) yo, where a = a(u), one can get A ° constant along the field

Yos 1.€.,
AC, =0. (4.2)
Thus theimage ofasolutionisacurveu = f(R )tangenttothe

field y,; what is more, one can choose its parametrization
suchthatdf/dR = yo( f(R ). AsA °( f(R )) = const = : 4 %,s0

uj=fj(;12-x“) (4.3)

is a solution of a nonhomogeneous equation:

as,“u] _a:,lldf Ao_a.fy,yglozbs'
7 dR J H
So as a Riemann invariant we can choose the linear function
R (x)= /{2 x*,

Equation (4.3) determines the solution u = u(x) corre-
sponding to the integral curve u = f(R ) of the field 7,. Such
solutions will be called simple states.

Let us notice that since A ° is a constant 1-form for a
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simple state so obtained, the solution is constant on (n — 1)-
dimensional hyperplanes, which are parallel to each other
and perpendicular to the field A °. Hence in this case the gra-
dient catastrophy does not take place.

The name of simple wave we reserve exclusively for so-
lutions of the homogeneous systems. One of the arguments
for such an approach is the fact that the accepted definition
of the simple state can be used for elliptic equations as well.
Such equations have no solutions, which can be interpreted
physically as waves. On the other hand it should be noticed
that some phenomena which are defined as waves in the tra-
ditional (physical) terminology can be described in terms of
the notion of the simple state. For example, a localized dis-
turbance propagating in a nonhomogeneous system and
called a solitary wave (or a soliton in some cases) corresponds
to a simple state. Physically a simple state describes a distur-
bance which possesses, in contrast to a simple wave, a well-
defined profile as well as a constant velocity and direction of
propagation. Moreover, the simple state has no gradient ca-
tastrophy (i.e., all partial derivatives |u/ , | of the solution
are bounded in the whole domain).

The demand of complete integrability of the system
(4.1) is a strong assumption [i.e., system (4.2) may have solu-
tions being not integrable]. So one cannot claim that the
method described above gives all simple states of the system.
For example, when m =/ = 1, i.e., for only I-scalar equa-
tion: a*(u) du/dx* = b (u), each solution is a simple state be-
cause rank||du/dx*|| = 1, but most of solutions does not
have the form (4.3).

The same may happen in a general case n > m, i.e., when
the system (1.1) is overdetermined since the solutions being
simple states generally do not have to be of the form (4.3).

Let us notice, however, that if

u(x) = f(R (x)) (4.4)
is the simple state for system (1.1), for which the matrix
a*(f(R)) /(R ) is a reversible one, then by inserting (4.4)
into Eq. (1.1),

G FRN SRR —bofR),
ax*

we obtain relation of the form dR /dx* =
[considering d (dR ) = 0] that

ArANA=0. (4.5)
HenceA (R ) = o{R ) A ®andthusR (x) = SP(/l x*).Changing
the parametnzatlon R = ¥(R), we have u(x) =f (R (x)),
where R (x) = 1 o x*is a linear function.

We now try to find the simple state u = f(R (x)) of the
nonhomogeneous system (1.1) demanding that the superpo-
sitionofthefunctions x—R (x)and R—f'(R }satisfy automati-
cally the equation

a(f(R (x))) F/R (x)) % =b°(f(R (x)))

If we want the condition for variable R (x} to not contain
the function f7(-), it will be natural to postulate that the func-
tion R (x) is the solution of the system dR /dx* = A4, (R ). As
we know, the function 4, (R ) must take form 4 (R )

=£(R) /l [vide (4.5)] 1f the above system is a solvable one.

Let us cons1der a nonhomogeneous system of Egs. (1.1)

A4,(R). It implies
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withm = 1. Let us also assume that 1 ° = (4 0)e & issucha
constant covector that the matrix || a¥w) A, ||: =] c}||isa
nonsingular one in the neighborhood of point u,c H. Let
matrix || ¢/(u)|| be the inverse matrix.

Theorem 2, Let us assume that an arbitrary function
E{R)#01is of a class C! and:

(1) R'S R— f(R Je H is an integral curve of the system
of ordinary differential equations: f = (1/&) ¢/( f) b°( f) sa-
tisfying an initial condition f(0) = u,,.

(2)R'D & — R ()€ R 'is a solution of the ordinary
equation R = £ (R ) with an initial condition R (0) = 0.

Then the function

ulx): = f(R(A x*) (4.6)
is the simple state of system (1.1} satisfying the initial condi-
tion ¥(0) = u,.

Proof results directly from inserting (4.6) into (1.1) and
using assumptions (1) and (2}:

s O’
a(u) o

=a’(fR) fAR)VAL R(A] x¥)

=G(fIR)SIR)E(R)

=[1/ER)] b(fIRNER)=b(Sf(R))=b"u)

Let us notice that the following function
% D x— R(A} x*)eR'is Riemann invariant in this
case. Q.E.D.

Theorem 3: Let « = f{R ) be the curve of class C ! in the
space H and 4 ° = (4 0 Je &* be a constant covector; let
£ (R )R also be variable such that

ER)aHSR)FIR)AL =b(f(R)). (4.7)

If ¢(&)is the solution of ordinary differential equation
of the form dp /d& = £ (p ), where & = A3, x*, then

ulx)= f(R(x)), Rix)=¢@(A} x") (4.8)
is the simple state.

Proof: In fact, differentiating (4.8), we have

auj 7 d@ 0

— = fIR)—*L4

Oxt SR do "

=/IR)ER)AL;

hence

@ O M FR)FIR)ER)AS
ox*
—bY(/f(R)). (4.9
QED.
Let us denote

cR):=|la(f(RN/R)|eL(&* R).
Then the one-parameter family of subspaces
¢(R)~" {spanb (f(R)\ {0}}

must have a common element in &*—i.e., (4 },). This is the
condition guaranteeing the existence of A€ &*and £ (R )e R'.

Theorem 4: Let R— f(R ) be a curve of class C ! in the
hodograph space H. Let us assume that the linear homogen-
eous system of equations

(when m = n)
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s JF s oF
B“(R)@+ B(R)-(ﬁ =0, (4.10)
where B#(R ): = a*( f(R )fYR),and BS(R ): = b{f(R))
has a solution

F=F(R, x).
If the system
u=f(R), FR,x)=0 (4.11)

is uniquely resolved with respect to R,u then the function

u(x) is a simple state of nonhomogeneous system (1.1).
Proof: From resolvability {4.11) it arises that one can

resolve the equation F (R, x) = 0 with respect to R, if

IR JF /9x*

At dF /3R
From (4.10) it results

B#R) R _pr), (4.12)
Ixt

hence @*( f(R ) f/(R ) 3R /3x* = b*(f(R)).

That ends the proof, since in presence of Eq. (4.11) we
have du’/dx* = f/R)JR /dx". Q.E.D.

Remark 1:1fm = nandthematrix || B *(R )| 1sarever-
sible one, then Eq. (4.12) can be written in the form

R

ox*
where A,: =B*b,, and || b, ||: = || B*||~'. Hence, as we
know [vide (4.4)],

A R)= A0 E(R), R(x)=R(A%x")
and equation

B*R)A,(R)=B"R)

gives exactly Eq. (4.6). Thus in this case both methods are
equivalent.

= /{;4 (R )’

V. THE EXAMPLES OF APPLICATIONS OF SIMPLE
STATES FOR THE NONLINEAR NONHOMOGENEOUS
EQUATIONS

Now we shall present a few examples which will illus-
trate the theoretical considerations. Let us consider the
equation of the second order:

g#v¢”xuxv :b(¢) )) #)V=0’172’3 (51)

(where g#¥ is a constant metric tensor with arbitrary signa-
ture—Riemann or Lorentz, for example), which can be used
for the description of the Josephson phenomenon in super-
conductivity, in Euclidean field theory, in the theory of ele-
mentary particles, in electrodynamics, in magnetohydro-
dynamics, in gas dynamics, etc.

According to the requirements of the method, we re-
duce Eq. (5.1) to the system of equations of the first order:

g, o =ble), P =@

(5.2)

Prxr ~ Py = 0, u,v=0,12,3.
We have gotten the system of 11 equations for five unknown
functions (@y, @1, @2, @3, @). Introducing real simple integral
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elements, we get
gryid, =ble) YA, =@
(5.3)
YA, — 74, =0, u,v=0123,
wheredg, /dR = y* and dp /dR = v*. Thus the simple in-
tegral nonhomogeneous elements have the form

big) ‘Po)
- _-_—/l,k’— ’
14 (glw/ln/lv (Ao A) i,

Po _ b P _ P

Ao A Ay A
A=(ApA), Ai=(A,,4:45) (5.4)
The solution—simple state—is given by the expression (4.3).

The problem is reduced then to solving a system of ordinary
differential equations:

dg, — blp)
dR  g"A, 4, "

»

>

(5.5)
4o _ @0 _ ® _ O _ P

dR i, A, A, A,
where R = A,,-X*and 4, are arbitrary real constants. Hence
we have

g4, L@P=2| [blp)dp+E], (5.6

where F is an arbitrary real integration constant.

ki

A. The field equation

Now let us consider a particular wave equation (5.1) in
the case when its right-hand side has a form
b(p)=44¢° + 3Bp? + 2Cp + D, namely,

8*'Q o =4Ap> + 3Bp* +2Cp + D, A,B,C.DeR'.

The solution—simple state—is given here by virtue of
Eqg. (5.6) by the following expression:

lglg) =Ap*+Bp’+ Cp’ + Dp + E,
g=g" A, A, . (5.7)

The general solution of this equation is given by the elliptic
function.?* Thus we have

¢(R)=vg/24 f(Rt), 8/24>0,
where the function fis given by the formulas

1 PR+, w,0,)+ P'(R -1t 0,0, _

f(R’t) = a,,
2 PR+, 0,0,) — PR —Ut, 0,,0,)
R=41,x",
and the quantity ¢ satisfies the conditions
P(L wl’wz) = a% — 4y
(5.8)

Plt, 0,,0,) = 2a} + a, — 3a,a,,

wherea,;: = B /22Ag, a,: = C/3g,a,: = (D /g) VA /2g,
a, = 44E /g’ and where P is the Weierstrass P-function®*
satisfying

P?=4P> - g,P g, (5.9)

2309 J. Math. Phys., Vol. 24, No. 9, September 1983

The so-called invariants g, and g, are homogeneous func-
tions of the periods w, and @, of the fourth and sixth order,
respectively, and are given by formulas

, 1
gy, w;) = 60 mz e ey

, 1
Bon ) =10 B T

In our case the invariants g, and g, are given by formulas

glwy, ) = a, — 4a,a; + 3a; =g,
(5.10)
1 a, a,
8wy, ;) =det [a, a, a;| =:p.
a, a; a,

The existence of the periods @, and w, guarantees the follow-
ing fact.?® For every real number c¢ the equation J (1) = ¢
[where J (1) = g3 /(g3 — 27g3) is the module function of

' = »,/w,] possesses exactly one root in the fundamental
region of the modulator group. Thus, taking c: = ¢*/

(¢> — 27p?), we can obtain the ratio 7 = w,/w,. If g, = g#0,
then from the homogeneity of the function g, we can deter-
mine

oY =g~ gfl,7)
and, when g, = g = 0, we have

a)? =P_l g3(1,7')'

When w, is found, then w, is determined from the formula
@, = 7" w,. The periods @, and w, calculated in such a way
satisfy (5.10). One knows®® that such ¢ satisfying Egs. (5.8)
always exists.

By specialization of the right-hand side of Eq. (5.7) we
get particular equations appearing in various branches of
mathematical physics.

For example, let us consider the equations of motion for
the massive SU(2) Yang-Mills theory

oG*?
My b c 2 a
a I = €€ pc Gvav +ﬂ w[t ’
x
where
auw? auw?
a __ v M b
Gi = — + a€,,. w, Wt .
# ax* ax" #

By the so-called t"Hooft—Coorigan-Fairlie-Wilczek
ansatz

o_ 0P
ewy, =i—— [,
o e (2
. I s Op /
ewi = 6-ian + laai ’
ax" ¢ Ix° ¢

the potential w;, may be reduced to a potential @ satisfying
the scalar @ *-theory equation
Op—iu'p+Aip’=0,
(5.11)
3 2
SR
ax”) Y

s=1
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with the initial conditions

dp (0)
@ (0) = @, 0 =0.
In our case the ordinary equation (5.7) can be reduced
by a particular choice of constants 4 = — A /4, C = u*/4,

B = D =0 to the elliptic equation

2@V =p’p?—Ap* +4E, where R=4, x*,
which can be solved by Jacobi functions.?* Thus we have 262’
snE, =1,

@ =@ocn(d A, x* + Epk,), cnE,=1,

P =@ sn(Al/lﬂx" + E\ k),

@ = @odn(d,A, x* + Eyk,), dnE; =1,

and

Al =a+ibp;, ki= —Api/24tg a= —p’/2,
Al =a+bp), kiI=Aplridig, b:=A/g,

A =bpl/2,  ki=k[} g=A45 -2

where k; are the Jacobi parameters. In this particular case
the solutions can be interpreted as “periodic waves” (period-
ic potentials).

At present let us consider a particular d’Alembert equa-
tion of the form

Op=pp +¢@? ueR'. (5.12)

Using the general procedure presented in this paper,
one gets an ordinary differential equation which turns out to
be identical with Eq. (5.7) with the particular choice of con-
stants B=1,C=u,A=D=0.

The general solution of this equation is again the Weier-
strass P-function, satisfying Eq. {5.9). In this case the invar-
iants g, and g, are given by the formulas:

2

8@, @) = —l*';‘gz‘ )

o @) = — ﬁf E_1_

8wy, @) (6g + 2 (6

We can determine the periods of Weierstrass P-func-
tions @, and w,. Then the solution of Eq. (5.12) takes the
form

p=68P(Rw, w,)—p, R=A4,x".

Now let us consider the asymptotic situation where one
of the periods of the Weierstrass P-function becomes infinite,
for example, w, = . In this case we can express the solu-
tion with the help of the trigonometric functions. The results
are easily derivable.

In one-dimensional case the general solution is well
known?®:

¢=1n<i flx+1)gx—1) )
l [flx +1) —glx —1)]?
where fand g are arbitrary functions of one variable and f*
and g’ are their derivatives.

In a more general case of four dimensions, our proce-
dure gives for a solution [the simple state of Eq. (5.13)] the
following expression:

e=In[P(+ u/2(A3 =24, x*ww,)—(1/3u)D],
(5.14)

where P is the Weierstrass P-function satisfying Eq. (5.9)

with the invariants g, and g, given in the following form:

&alwy, w)) = (4/3°) D2, gylwy, w)) = (—8/27°) D>,
(5.15)

Equation (5.13) has the physical interpretation in the
Euclidean quantum field theory. According to Ref. 29 parti-
cles are described as the singular solutions of the Liouville
equation. In our case, solution (5.14) with the conditions
(5.15) describes the motion of a single particle in the Euclid-
ean quantum field theory.

Equation (5.13) also has another interpretation in plas-
ma phsyics. Let us consider electrical potential v created by
particle distribution (ions, electrons, etc. with charge Ze,
where e = elementary charge and Z = nonzero integer
number) at absolute temperature 7. Let the concentration of
charge particles be n,. Then we have the following equation
for potential®®:

Av = — 4irengexp( — Zev/kT).

By substituting ¢ = — Zev/kT we obtain Eq. (5.13), where
= 4wZe’n,/kT. Thus the obtained solution (5.14) with the
condition (5.15) describes the self-consistent potential creat-
ed by charged particles at temperature 7. This potential al-
ways has a singular point, given by

P+ Ju/2(A5 — M) A, x*0,, w,) — (1/3u) D =0.

Therefore, we can consider this solution as a logarith-
mic potential created by an effective point charge located ata
singular point.

C. The sine-Gordon equation

Let us consider now the four-dimensional sine—Gordon
equation:

O @ = sing {5.16)

B. The Liouville equation

Now let us start with Liouville equation in four dimen- with the initial conditions
sions:

, — Ip(0) _

O¢ =pexpp, ucR'. (5.13)J ?(0) =0, ax° 0. (5-17)
In this case the solutions of Eq. (5.16aj—the simple states—are given by the expressions:

@ = 4arctan[@, sn(d, A, x* + E k)] +(2j+ 1), snE, =1,

@ =4arctan[@, cn(d A, x* + Ey k)] + 2/ + )7, cnE, =1, (5.18)

@ = 4arctan| @, dn(4,4, x* + E3 k3] + (2 + 1) 7, dnE;=1.
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42 —D+3) (D—l)q)g k2 = (D—1)<P_3,
' 4g 8g g A:
2
a2==0+3) B2y [1=D) #o (5.19)
4g 4g 8g 243
43 = “;gD’své, KP=ki% @t+2D+3)pi—1=0,
whereg: =13 — A% DeR', je Z.
|
— H 4 H 2
D. The cosh-and sinh-d’Alembert equations (d_u ) _ Lz (c2+2c1u—u2 Ay 2u3),
Let us consider the semilinear system of equations of dR A3 5
the form: (527)

(5.20)

The solution of Eq. (5.20)—the simple state—is given
by the expression

@ =In[4gP(R, v}, w;) —3D ],

(a) O@ =coshgp, (b) O¢ =sinhg.

(5.21)
R=4,x*, DeR', g:=15—A%
where P is the Weierstrass P-function satisfying Eq. (5.9)
with the invariants g, and g, given, respectively, by the for-
mulas
g:(w, w,) = (1/432)(§D2 + 1),
(5.22)
8ilw, ) = (— D/g3)(D2/27 + ﬁ),
where the upper sign refers to case (a) and the lower to
case (b).

E. The Korteweg-de Vries equation
Finally let us consider the Korteweg de Vries equation:
u, + 6uu, +u,, =0. (5.23)
Reducing Eq. (5.23) to the system of the first-order
equations of the form

u, +p, = —6uv, u,=v, v, =p, (5.24)

we get a system of three equations for the three unknown
functions ( p,v,u). Introducing the notion of real simple inte-
gral elements we get

YAh+r'd,= —6uw, YA,=p, PA,=v, (525
wheredp/dR = y',dv/dR = ¥*,du/dR = 7. Thus the sim-
ple integral nonhomogeneous elements have the form of

v =1/ — v6u + A,/4,), pv), A = (A, 4,).

The simple state, according to the discussion in Sec. IV,
can here be made to satisfy the following conditions:

a4 _ v (6u + /il), where R=At+4,x,
dR A, A,
du v dv _p (5-26)
dR  4," dR 4,

where A, and A, are arbitrary real constants. Then we may

reduce Eq. {5.26) to the ordinary differential equation for the
variable u in the form:
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where ¢, and ¢, are arbitrary real constants. If we substitute
u = —(y+ A,/64,)and exchange variable s = (3/21,)'/?R,
we can reduce Eq. (5.27) to the equivalent form:

AR O

DY 4y 2o, +— (22

(ds Y LA T
1 (k)

—o+ S+ (5.28)

34, 54 \4,
The general solution of this equation is again the Weier-
strass P-function satisfying Eq. (5.9) with the invariants g,
and g, given by the formulas:

e e (@]
== |2, + (4
£ 3[C‘+6 )

e &A1 'h)z
B 5 "5 \n,)
Hence we can write the solution of the KdV equation in the
following form>!:

ultx) = —P(Agt+ A4, x+ D, w,, w,)
—A1,/64,, DeR!, (5.29)

which is a particular case of the so-called solitary wave and it
is a one-soliton solution.

Finally it should be noted that the Weierstrass P-func-
tions appear in all solutions of the nonhomogeneous wave
equations of the form (5.1) as well as in the Korteweg—de
Vries equation. It seems that the known soliton equations are
closely connected with the elliptical functions, but this fact
needs further investigations.

V1. NONLINEAR SUPERPOSITION OF SIMPLE WAVES

There have been also studied'®'?""” the solutions of the
homogeneous systems (3.3) representing the nonlinear su-
perposition of simple waves, i.e., the double wave and in
general the k waves. A form of solutions of the system (3.3)
for which the derivative du(x) of the mapping « is the sum of
homogeneous simple elements has been proposed

du(x) = i Ery, 8 A,

r=1

ATANARAN A"#£0 for ry<r,<r;, k<1, (6.1)
@ v AL =0,
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where quantities £ "==0 are treated as variables dependent on
x. It was proved'®? that the solutions of the postulated form
{6.1) exist and can be written in Riemann invariants. It
means that in the latter case (Riemann invariants) we make
the additional assumption that the commutators for all vec-
tor fields v, and y; are the linear combinations of these fields,
ie.,

[7,, v,] €span [y,, 7.} .

rse | l
So if these condmons are satisfied, then we may change the
length of the vectors ¥, and y, such that [y,, ;] = Oand the
vectors ¥,,...,¥x constitute a holonomic system, and there
exists a parametrization of the surface tangent to the field

YViseesVi

u= f(R), where R:=(R',..,.R*)eR", (6.2)
such that
d(R)
“—— ~v, (R)eTqr, H (6.3)
R 7, (R) F(R)
Consequently,
ke af
du(x) = -——dR",
( ) r;l c7R T
dR" = % IR g,
=1 ax#

which together with the assumption that y,,...,y, are linear-
ly independent, leads to a system of Pfaff forms
dR '{x) = £'A(R (x)), where £7(x)z£0, re {1,...,k].

(6.4)
The fields of covectors A “become functions of the parameter
R (ie,A"=3%]_, A](R)dx"e&*). Involutivity conditions
for the system (6.4) were already investigated.'®'> Namely
the system (6.4) has solutions (is integrable) if the following
conditions are satisfied'*:

a’
rése 1.k} R’
These relations are necessary and sufficient conditions for
the existence of the solutions of the system (6.4). They ensure

us that the set of solutions of the system (6.4) depends on &
arbitrary functions of one variables. From Egs. (6.5) we have

27 s aS a s
Lz(aian a’)zw (ﬂia:+ B’)/r
JR*

JR" IR’ dR*
(BB +a, B A, r#t#s.

Hence the compatibility conditions (that is, the symmetry of
the second derivatives) are of the form

= A BIAT. (6.5)

ap;

b =8B —Bia; + Bia for r#s#t, (6.6)
IR’

da; da;

— =0 for rt #s. (6.7)

JR'’ JR’
Equations (6.7) give
3 ¥I(R): a = — o for r#s.
Hence @ *: = exp(¥ °) satisfies
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s

op

+@’al=0.
R ¥
Introducing the notation
A% =@A%, (6.8)
we obtain
s =
=pB3 A" for r#s, 6.9
R # (6.9)
and Eq. (6.6) takes the form
% B: B! for r#s#t (6.10)
=B B for r#s#t. .
IR’

Let us notice that replacing 4 ° by A * does not change the
basic system of partial differential equation for R *(x).

For k = 1 the compatibility conditions (6.5) are auto-
matically satisfied (do not exist).

Let us study now an example of the formulation of the
Cauchy problem for the Pfaff system (6.5) in the case of dou-
ble waves.”* The conditions (6.5) can be written in an equiva-
lent form. We can always choose a normalization of the
length of covectors A °€ &* such that A *=(1,43,...,4%),
s=121fA" .;andA? ., espan {4, 12}, then there exist
functions a; and B2 of R = (R ', R ?) such that

/1"Rz=a;(/1‘—/12), (6.11a)

A2 =BHAT A, (6.11b)
Differentiating (6.11a) with respect to R ' and utilizing Eq.
(6.11b) [or vice versa—differentiating (6.11b) with respect to
R ? and utilizing Eq. (6.11a)], we obtain linear hyperbolic
system of n equations of second order for the unknown func-
tions 4 % i.e.,

A pigr H@AT BT L

where the quantities

(6.12)

ai= —a;, bli= —(B] +a) /),

— B3 /B, b:=p1
are treated as the given functions of R in the domain
4 C ¥, having continuous second derivatives in % .

Equation (6.12) [just as Eq. (6.11)] separates into # indepen-
dent scalar equations for the components of the vector A *

(6.13)

(u stands for a given component of 4 °). Thus we obtain a
hyperbolic equation with two independent variables. The
classical result concerning the Cauchy problem for the equa-
tion

a=al —

u,R’R2 +asu_R1 +bsu’R2 =0, s=1,2

U iy -f-au'xl + buvxz =0 (614)

is well known.** We specify the value of the function « and
an outgoing derivative of u along a noncharacteristic initial
curve I"on the plane (x',x%), i.e., 4|~ and du/dz|, are given.
The solution of the problem (6.14) exists and is unique in the
rectangle bounded by characteristics containing the curve I”
(Fig. 1). It can be expressed by means of the so-called Rie-
mann function v by the formula

U(P)=i[vi )uld) + U(B Ju(B )]
— J- [u—— — u— + uvlan, + bnz)] ds, (6.15)

where 77, and 7, denote the dlrectlon of the outgoing normal.
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1= € x'=dy
:18 d.z xi=d,
x=xd %%=]_2U,x|
(% ,)=1(0.1) v, 1= bV P= (x', x2)
—————
A
X =X
=(1,0
dz°7 Ym2
v.,2=av
c B
x'= ¢ xt=d,
xt = ¢, Xz ¢,
FIG. 1.

By du/dz and dv/dz we denote the directional derivative
Yoy + nu,2)and (0, + 7,0, ), respectively. Riemann
function » for Eq. (6.14) can be defined by the conditions

Vg —av, —bve — (@, +b:v=0
v, =av along x'=const=xg, (6.16)
v =bv along x*=const=x].
The conditions (6.16) are equivalent to
v=Tv+1, {6.17)

where T is an integral operator of the form

Tv= — J.:(bv) dx' — J: (av) dx?.

It can be proved?* that for arbitrary v the following inequa-
lity holds:

|Tv|<imax|v|. (6.18)

From Eq. (6.18) it follows that Eq. (6.17) has exactly one
solution (which can be obtained by the iterative scheme
v, = Tv, + 1 and v, = 1). This proves that the Riemann
function for Eq. (6.14) exists and is unique.

We prove now for an arbitrary k> 1 that all the solu-
tions of the system (6.4) can be obtained [taking into account
(6.5)} by resolution with respect to the variable R ,...,R* of
the system

AR )x = ¥R), (6.19)
where ¥° are the arbitrary functions of class C ' of the vari-

able R = (R',...,R*).
Indeed, differentiation of Eq. (6.19) gives us

(aws B awx))dRS_/ls
SR°  OR°®
& s, 5
- (M _o¥ )dR g (6.20}
r¥s=1 3R' aR’

If the system (6.4) is satisfied, then the left-hand side is pro-
portional to A %(R ) and the right-hand side is a linear combi-
nation of A (R ) for r#s. Thus, if £ °=£0, then
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% ¥ _ (6.21)
dR’ dR"
From (6.21) and from the compatibility conditions (6.5), we
have

O —aiam + B0 )
dR"
so, by virtue of (6.19), we obtain®’
O W B, rets. (6.22)
JR”
Then Egqg. (6.20) gives
(—‘W _ :"‘)) dR* ="
dR* dR’

where ¥ /R * — J(A °x)/IR *#0is the resolvability condi-
tion. So we have Eq. (6.4).

Iffor example £ '=0, then R ' = R}, = const. From the
integrability conditions (6.5) for the covectors
AR):=AR}LR),s=2,.,k where R = (R?..., R¥), we
obtain

A’

dR"
where the functions ¥2,...,%* satisfy the conditions 6.19)
and (6.22) for r>2. Thus the solution is givenby R ' = R}
and by the function R 2,...,R* obtained by the resolution of
the system

WAR)=A%(R)x* for s>2.

=FA° + B34 for s#ref2,..k},

In particular, for kK = 1 we obtain the formula (6.19) for the
simple wave

W(R)=A4,(R xR =¥ (L, (R ).

Let us investigate now the compatibility conditions for
the system (6.22). It is a system of k > — k equations for k
unknown functions. We have
2 s da; apg;
U _ 0 gy By v+ piw)
JdR’IR* IR’ dR’
+Bila¥ + BV
o v o+ (i)
= +alal |+ | —Bial |¥”
(aR ' ' AR’
+ (@B +BB)¥!
for s#r+#t. Symmetry of the second derivatives gives

da; aa; 41
= y S r,

JR' IR’

aB;

+Bia] =a;B; + BB, (6.23)

JdR'
We see that the conditions of the symmetry of the second
derivatives are the algebraic consequence of the system
{6.22), because the formulas {6.23) are identically satisfied by
virtue of the relations (6.6} and {6.7).

If we make the transformation (6.8), then Eq. (6.22) can
be written in a more simple form

v
dR’

=pB:¥", where B =8(R). (6.24)
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Notice that in the formula (6.24) the variable x does not ap-
pear explicitly.

Remark: As we know, the solution of Eq. (6.4) can be
obtained by integration of the system (6.22). Conversely, we
will show that every nondegenerated solution of the system
(6.4) can be obtained using this method.

Indeed, Eq. (6.4) implies that for Z°(x): = 4 ,, (R (x)}x*
we have

k9L x")
A0 =A"R)+ 3 —L-—§'A'R),
(R) ,; R §A'R)
If £7=£ 0, then
k
dos = z @;dR’, for s=1,.,k, (6.25)

r=1
where ¢¢ are functions determined on €. Additionally, the
functions R ,...,R* are functionally independent, so we can
add them to the map (R ',..,R?,R?* ', ,R ™). Then (6.25)
means that we have the following conditions in this map:

ao: . . ao*
=¢, for r=1,..p and W
L a0’

9R"™
= —0. E.D.
IR " Q

so J°= ¥R ',..,R?).

Now we will formulate the Backlund transformation as
follows. Let us consider the system (6.22). Let us assume that
we can find®® linearly independent functions A *(R )& *
(where dim& >k ), such that Eq. (6.5) holds. For these func-
tions we can construct the system of Egs. (6.4). Then using
the above-described method we can obtain solutions of the
basic system (6.22) from the solutions of Eqs. (6.4). By the
Bécklund transformation we understand here the transfor-
mation from Eq. (6.22) up to Eq. (6.4}, and vice versa.

In the Paper II we shall use notions introduced here and
methodology for the case of nonhomogeneous systems of
p-d.e. with the particular emphasis on nonlinear superposi-
tions of simple waves and simple states (propagation of a
simple wave or many simple waves on a simple state).
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In this paper a generalization of the Riemann invariant method to the case of a nonhomogeneous
system of equations has been formulated. We have discussed in detail the necessary and sufficient
conditions for the existence of Riemann invariants. We perform the analysis using the apparatus
of differential forms and Cartan theory of systems in involution. The problem has been reduced to
examining Pfaff forms. We have considered the connections between the structure of the set of
integral elements and the possibility of a construction of special classes of solutions depending on
k arbitrary functions of one variable. These solutions can be interpreted physically as the
interactions between k simple waves on a simple state. We have proven that, in the case of
interaction of many simple waves described by Riemann invariants, a conservation law for the
type and quantity of waves holds. It has been also shown that such a solution, resulting from the
interaction of many simple waves propagating on the simple state, decay for a large time in an
exact way into simple waves {(of the same kind as those entering the interaction) on the state. The
Cauchy problem for the nonlinear superposition of k-sample waves has becn formulated. A
couple of theorems useful for this problem have been given in the Sec. I11. The functorial
properties of the system of equations determining Riemann invariants have been described. The
last part of the work contains an analysis of some examples of the solutions of nonhomogeneous

magnetohydrodynamic equations from the point of view of the method described above.

PACS numbers: 03.40.Kf, 02.30.Jr

I. INTRODUCTION

Paper 11 is a continuation of the Paper I' of two papers
devoted to problems connected with the theory of simple
waves and simple states in systems described by partial non-
elliptic differential equations?:

7}

Ixt Wi(x)=b"(u,....u"),

a¥(u',...,u')

(1.1)
s=1,...m, j=1,..1
x=(x",. x")e¥ CR",
u( x) = (u'( x),...,.u' ( x))e# CR!.

All notions and notations are taken from Paper I, where
they are more formally introduced. Only new concepts are to
be introduced here in this paper.

In contrast to the Paper I in which emphasis was put on
the notion of simple waves and simple states as the elemen-
tary solutions of equations of interest, here in Paper Il we are
interested in looking after more general classes of solutions
and their properties. We consider here the nonlinear super-
positions of simple waves described by nonhomogeneous
systems of Egs. (1.1). We are specifically interested in such
solutions from the point of view of their degree of freedom
contained in the form of arbitrary functions. For example,
we consider the case of solutions depending on k-arbitrary
functions of one variable.

u=1..n,

* Partially supported by NSF under Grant No. INT 73-20002, A-01, for-
merly GF-41958.
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Il. NONLINEAR SUPERPOSITION OF THE SIMPLE
WAVES IN NONHOMOGENEOUS SYSTEMS

The algebraization, which was done in the Sec. II of
Paper 1, of the system of Eqgs. (1.1), allows us to construct
more general classes of solutions.> We propose now a form of
the solution u for which the tangent mapping du( x) is the
sum of the homogeneous and a nonhomogeneous simple ele-
ments:

k
dulx)= Y &y, 04 +§%,04°% k<,
t=1
(2.1)

5, o S, J O __ ps 0, _
atyind, =0, atyigd’=0b", §% =1,

where £’ 540 are treated as the functions of x. The simple
integral elements (y, ® A* which are homogeneous and

7o ® A ° which is nonhomogeneous) represent the simple
waves and a simple state, respectively. Such a solution « of
the system (1.1) will be called later on a superposition of the
simple waves on a simple state.

It was proved*~® that the solutions of the postulated
form (2.1} exist and can be written in Riemann invariants. It
means that in the latter case (Riemann invariants) we make
the additional assumption that the commutator for all the
vector fields y, and y,; are the linear combinations of these
fields, i.e.,

s . 2.2
a,ﬁelO/,\l,.u,kl[ Yer¥plespan( va,7s] {2.2)

When these conditions are satisfied, then the vectors
Yo ¥ 15--Yx constitute a holonomic system, and there exists a
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parametrization of the surface tangent to the fields ...,y :

u=f(R), whereR:=(R",.,R¥) (2.3)
such that’
(R)
aem,/,\’_",kl SRe "1 (R)eTr\H. (2.4)
Consequently,
Laf JdR*
du(x) = —~2_-dR*, dR°® = dxt , 2.5
(x) ago IR- r (2.5)

which together with the assumption that ¥y,...,y, are linear-
ly independent, leads to the system of Pfaff forms:

dR%(x) = £*A%(R), where £*#£0,ae{0,1,....k }. (2.6)

The fields of covectors A* become functions of the param-

eterR: = (R ',..,R*)i.e, A% = A &(R )dx* €& *). Involutivity
conditions for the system (2.6) for the case of many indepen-
dent variables were already investigated in Refs. 4-6. These
conditions put some restrictions on the covectors A% in the
system (2.6). Namely, the system (2.6) has solutions (is com-
pletely integrable) if the following conditions are satisfied:

%}(g;)zaUAa(R), oe(0, k], re{l, k],
(2.7)
M — r . r o
SRe ~PARIHEATR), oFn,
(2.7b)

ATAATCALR£0 for a,<a,<as,

where a, 87,6 " are given functions® of R and we have not
performed summation with respect to the index . These
relations are necessary and sufficient conditions for the exis-
tence of the solutions of the system (2.6). They assure us>®
that the set of solutions of the system (2.6) depends on &k
arbitrary functions of one variable according to Cartan the-
ory of systems in involution.

Let us consider separately two extreme cases: (1) when
the coefficients @, do not vanish anywhere and (2) when a;
are identically equal to zero.

A.The case o, #0

Let us assume that all the functions ¢, are different
from zero; then it follows from Egs. (2.7a) that

0
=LA k) 2.8)
a, OR’
Let us notice that Egs. (2.7b) for o = 0 are the consequence

of Egs. (2.7a)
A" 3 (1 a,1°)

GR°  OR°\a, 9R"
Function A ® must satisfy Eq. (2.7a) for o =0, i.e.,
.
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Let the function @ be the solution of the equation dg/
IR ° = a,; then

A%R)=A(R)exple(R)], _ (2.9a)
AT(R)~ %’;—f ~ (ig—}g—),i (R)+ %), (2.9b)
where R: = (R ,...,R*). Moreover, the conditions (2.7a) give

azzf/;;x = afe’ A ) = (jzi +asﬁi)/l‘+a5§ii’
=C, %j +C, %)-, rs£se(l,...k}, (2.10)

where C,,: = (1/2a,)(da,/dR” + a,B; + a,{ 7). Inserting
{2.8) and (2.9a) into Egs. (2.10), we obtain linear hyperbolic
system of equations of second order for the unknown func-
tion A4, i.e.,
A dA aA

= Prs + Psr rs’l’ ’
IR 3R’ R° R O S
where the quantities

P .=C,—0d¢/dR", Q,:=C,dp/IR*

+ C,,dp /IR" — P @ /IR’ IR*

are treated as the given functions of R in the domain & C ¥
having continuous second derivatives.

From Egs. (2.11a) we have

3 JpP
94 ——(’S+mﬂ)3i
JR"JR* IR’ oR' JdR*
oA
+ Pr:Pls + PsrPlr + rs
( 0. e

JP
+( ”+&m)”

(2.11a)

JR' dR"’
aer )
Prs st + Psr rt /1) r s t
+ (aR' Q Q #57#

Hence the compatibility conditions are of the form

P,

= PrIPst_PrsPSt+Prt_ rs'__o’
- ( -0
dP,, JP,

e O o rtsar, 2.11b
JR' OR’ 757 ( )
9Q 0@,

= — - + slPrs_Prt+ rrPsr_ rsPlr=0‘
X )+ 0,P, —Q

Equations (2.11) separate into » independent scalar equa-
tions for the components of the vector A° in the form

2
Fu —pP du +P du
JR*AdR’

Q. u, s#r. (2.12)

" OR° " OR
In Eqs. (2.12) independent variables R’ (i¢{7,s}) can be treat-
ed as parameters. Thus we obtain one hyperbolic equation
with two independent variables. The Cauchy problem for
Eq. (2.12) can be solved by means of the Riemann function.
One can prove® that the solution of Eq. {2.12) exists and is
unique in the rectangle bounded by characteristics contain-
ing the noncharacteristic initial curve.
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Ifthe covector A °(R ) is of the form (2.9a) and the covec-
tor A" is determined by formula (2.9b), then compatibility
conditions (2.7) reduce to Egs. (2.11). So we will investigate
the system of Egs. (2.6) in the form

dR°=A(R)exp[ ¢(R)], (2.13a)
AR = & (__35 B)3R) + —"ggf ’), (2.13b)

(whereA,d4 /AR ',...,04 /3R* €% * are linearly independent),
assuming that the compatibility conditions (2.11) are satis-
fied.

We prove now that, assuming (2.11), we can reduce the
system of Pfaff forms (2.13) to the overdetermined system of
partial differential equations of the second order for one un-
known function depending on k + 1 variables R °,...,R*. We
present the unknown solutions of the system (2.13) in the
implicit form'®

A(R)x= ¥R, 19-’;—1(:;1 x=W¥(R) (2.14)
Differentiating Eqgs. (2.14), we obtain
koA oy’ aw°
XdR* + A4 = _ 4R,
2 ar TR A= 0 &,
k 2
T xaR + -T2 g 4 ‘9’1
.2 OR'3R° aR'aR' R
_ov k ow
O 4ro+ LA L) 2.15
= 9R° ,;:, R Nt R 213)

If the system (2.13) is satisfied, then for £ =0 we have
koA

)Y JR* -x dR* + exp(— @ )dR°
s=1
awe k awe°
= dR’,
aR 0 + SZI
k
6’2'1 xdR* + FA x dR"
ssére1 R’ R’ IR AR"
Larr — 92 exp(— p)dR®
§ JdR’
avr v
= dR°® ——de dR".
aRe“n T s}_, 3R GR’

Assuming that Eqgs. (2.13) are nondegenerated (i.e.,
dR°dR,...,dR" are linearly independent; thus £° s£0), we
have

ETZ o ap
W=CXP(_¢)’ 3R° +5{;-exp(—¢7)=0,
W A ow A

R R Y R T erar T T
o #A

1
dR"  GRAR T F

Taking into account Egs. (2.14) and compatibility conditions
(2.11), we get

o¥°

R0 T — P — o) (2.16a)
0

‘;ﬁs =W, srefl,.. k}, (2.16b)
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v

+ ex = 2.16¢

3RO c?R’ pl— @) ( )

g,f: =P, W'+ P ¥V +Q.¥° r#s, (2.16d)
2

L (2.16¢)

3R’ AR’ &

Note that Eqgs. (2.16c) are the closure conditions for the
1-forms £2°: = exp( — @) dR ° + ¥* dR*®, which are the
compatibility conditions of the system (2.16a) and (2.16b) for
the function ¥ °. The general solution of Eqgs. (2.16¢) has the
form _ . _

veg)= 2R _ (k)

JR* o OR’

[where the constant of integration with respect to R 0 de-
pending on R, is denoted for convenience by d& (R )/dR*].
Having the functions ¥° (R ), we can solve the system of Egs.
(2.16a) and (2.16b)}. Integrating the closed forms £2°, we have

R* R°
WO(R)=J(; a‘;}g“dR‘ J. exp[ — @ (R

0

exp[ — <p(r,ﬁ )] dr,

)] dr.

Thus the general solution of the system (2.16a)—(2.16c¢) has
the form

YOR)=(R) + f expl — ¢ (nR )] dr,

(2.17)

s 3P (R) ®" 9 (r,R) =
woR)= 20 | R exn] — @ (rR)] dr.
RI= ="k , o OPL—@R)ldr

Inserting (2.16b) into Eqgs. (2.16d), we get
Fwe e v

=P, P wo, :

KRR ror Thegpr TO¥h s#r
(2.18)

So conditions (2.18) constitute an overdetermined system of

k * — k partial differential equations of the second order for

one unknown function ¥° depending on k + 1 variables

R°,..,R* (while the variable R ° is treated as a parameter).
Then Eqgs. (2.16¢e) give

(aw P
dR"  AR')

)a’R’ —

_ (2R) A (R ))

( AR’ AR)+ aR" /'
where 3¥" /dR™ — F*A"-x)/I(R")*#0 are the resolvability
condition. So we have (2.13b).

Remark I: For k = 1 the compatability conditions
{2.18) do not exist. So the solution of the system (2.13) is
determined by formulae (2.14) and (2.17). Let us notice that
for an arbitrary k>1if W° =27 _ 0% 1,, 0* R, then by
virtue (2.11) the Egs. (2.18) are automatically satisfied.

Theorem 1: If the conditions (2.11) are satisfied, then
the general integral of the system (2.13) has the implicit form

o

ARx=0R)+ [ ewl —pnR)) dr (2.19)

A (R) ® (R R® 30 (r.R -
a(RS)x = awis ) X %%f_)e"p[_‘p("m]dr’

(2.19b)

where the function & (R ) satisfies
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az¢ _Prs 9P _Psra_¢_Qrs¢
IR’ JR* dR*

JR’
RO
> o Op 8¢7)
= - —@)d
fo (aR’aR’ exp( —@)dr
RO

OR" IR°
dp
— P
" Jo IR expl

R ° a¢7
XL 3R’ exp(

—@ldr—P,

—@)dr

RO
-{-Q,SJ0 exp(— @) dr for s#refl,. .k}. (2.20)

Proof: We show that if the conditions (2. 11) are satisfied,
then the implicit form of Egs. (2.19) determines the solution
of the system (2.13). Indeed, differentiating Eq. (2.19a), we
get

S dAx  dP " 8:p
=1 LOR? dR? o ORF

XdR? + A =exp(—¢@)dR". (2.21)
Hence by virtue of (2.19b), we have A = exp{ — @) dR °, that
is, (2.13a). Next, differentiating Eqs. (2.19b), we obtain

[ Fix &P
Pns 1 dR’IR* JR°IR?

exp( — @) dr

R
& Jp 8¢7) ]
- — p)dr|dre
fo (aR’aRP 3R orr) P #)dr

dA_ _ dp

R - R exp{ — @) dR°. (2.22)
Let us notice that by virtue of (2.11) and (2.20) the matrix
_ PAlx  Fo
" GR°GR®*  IR°IR®

R
& o 3¢7)
— —p)d
L (aR’c?R" 3R ore) PP

is diagonal. Hence, utilizing Eq. (2.13a) just derived, we have

R = — L[ | 9 exp(—:p)dR"]

A, LOR° OR®

_ ( dp A+ A )

IR® JdR*
that is, (2.l3b).

Conversely, we show that every nondegenerated solu-
tion R ( x) of the system (2.13) can be obtained by resolution
with respect to the variables R °,...,R* of the system (2.19).
Indeed, if (2.13) is satisfied, then
k04 (R)x

dIAR)x]= Y R
a=1

dR* + A (R)

X —
—@)dR+ Z 8/13(;’))\:
a=1

x az,i(R)de

a=1 dR*JR"

LR dp

JR® T

k

4 FAR)x pa
51 OR°IR"

+ (m + i) dR*.

AR°IR* &

= exp|

’

c?/{(R)x]_
JR*

exp(— @) dR°
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So the function A (R )-x and [d4 (R )-x]/dR°® can be
expressed as functions of R % x),...,R*( x). Q.E.D.
Now we will formulate the Biacklund transformation as
follows. Let us consider the system (2.20). Let us assume that
we can find'' function A€ * such that A AdA /
IR ' A+ ANIA /IR* #£0 (where dim& >k ) and that Egs.
(2.11a) hold. For this function A (R ) we can construct the
system of Eqs. (2.13). Then, using the above-described meth-
od, we can obtain solutions of the basic system (2.20) from
the solutions of Egs. (2.13). By the Biicklund transformation
we mean the transformation from Egs. {2.20) up to Egs.
(2.13) and vice versa.

B. The case whenalla, =0

Let us notice that in this case it follows from Eqgs. (2.7a)
that

A%R)= Cexp[ ¢(R°], where Ce&*,
where @(R °) is a differentiable function of one variable.

When ¢ = 0 by virtue of Eq. (2.7b) for arbitrary p” =p"(R)
and «" = «"(R), we have

&‘RO [A" expl—p ) — k" C]

4 ]
o
dR°

+ (65— LY expl—pr .

So if for quantities p* and «°, we take the solutions of the
system

apr _ gr ox”
R° % GR°
{(which always locally exist), then
A"(R)exp[ —p’(R)] =« (R)C+4"(R),
=(R',...,R¥),

where A:7— & * are differentiable functions of the class C '.
So we have

=[BanP(—p’+<P)—

=B exple — p)

A°R)=Cexpl @ (R)],

A (R)~{K(R)IC+A"(R)}, ref{l,..k}. (2.23)

Inserting (2.23) into Egs. (2.7b) for o > 0, together with the
assumption that C,4 1L AR are linearly independent, we get

a4’ re  OK
s =P~ ar
+ENC+BA + A7, r#te(l, k. (2.24)
Thus in this case the system (2.6) has the form
dy(R°%) =C, where y(R%:= fR expl — @ ()] dr,
’ (2.25a)
dR” =& [K"(R)C + A"(R)], refl,..k}, (2.25b)

for which the compatibility conditions are given by (2.24).
From Eq. (2.25a) it follows immediately that

Y (R =C, x* + C,, C,eR'. Let us notice that if the varia-
bles R” satisfy Eqgs. (2.25b)inwhichR® = y~ '(Cy xt 4 Cy),
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then
R — -

d[ K’(r,R)e‘¢"X‘”’dr°+A;(R)x“]
0

=x"(RO,R)C+ 4" (R x

R° ri- D r
+[ IR i gpo &A#x“]dRr
b als‘ ]
k "I (rR) _ a4 x*
LR ) g—etm gy  ZZEZ | GR
o2, f R’ 3R
R° ri. D r 1
=L +J I IR) ,—pierr g 4 OAn X" | 4pr
& b R R’ .1
0 a"’(’k) @ () 0A ;, x*
) e g TR GR.
+ r#;—l —[ t ¢ * aRt E

If £ 50, then the functlons [ 58k (r,R e~ XN dr® + A7,
(R )x*] can be expressed as the functions of R ( x),...,.R*( x).
So we have

RO
f KE(rR)e- PN g0 4 45 (Rpx* = ¥*(R), se{l,..k},
0

where ¥ * are differentiable functions of k variables. We
have the following theorem.

Theorem 2: If the conditions (2.24) are satisfied, then
the general integral of the system (2.25) has the implicit form

RO
C.x+Cy= f expl — @ (] dr, (2.26a)
0
R© N N
[ wrRie meap 4 4L R = ¥ R),
sefl,...k}, (2.26b)

where W *(-) are arbitrary differentiable functions of R.
Remark 2: Similarly, as in the previous case for k = 1,
the compatibility conditions (2.24) do not exist. So the solu-
tion of the system (2.25) is determined by formulae (2.26).
Remark 3: In the particular case when in Eqs. (2.25b)
the functions 4 '(R '),...,4* (R* )& * are arbitrary functions
of their arguments, then the compatibility conditions (2.24)
are automatically satisfied, and x° are arbitrary functions of
R °and R*. So we can study the system (2.25) in the form

dR°=Cexp{ ¢(R],
(2.27)

dR° = & (K (R°R*)C + A°(R*)}, se{l,. .k},

whereC,4 '(R '),...,4% (R* )& * arelinearlyindependent. The
general integral of the system (2.27) has the form

RO
C,x* +Cy= f exp[ — @ (r°)] dr°,
0

f & (%R Jexp — @ (x(r))] dr° + AL (R*Jx* = ¥*(R"),

where ¥ '(-),..., %% (-) are arbitrary functions of their argu-
ments. Other cases, when only some a” do vanish should be
considered analogously.

lll. FORMULATION OF THE CAUCHY PROBLEM

Let us study now an example of the formulation of the
Cauchy problem for the Pfaff system of the form

dR®=£°A°R)
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where

A%R)=A(R)exp[ (R)], £%(x)£0, a€(0,1,...k z(,3 .

dR* = £ X R), FR)=AR)pr(R)+Ap(R),
sefl,...k }.

According to Sec. 11, the system {3.1) has solutions if the
conditions (2.11) are satisfied. We are looking for the solu-
tion in the form

AR)x=G°R), A(R)x=G'R).

Then we have

(3.2)

aG° 8G°
dR® + A= sdR “,
,,Z. aR" + JR Tt ,,ZI 6‘R"
k
A ey P ape 4 L
aiee 1 OR°OR" IR’ IR® JoR’
s k 5 5
L) SIS LA SR 3
" 3R° ok 1 OR® dR*
If Egs. (3.1) are satisfied, then for £ 540 we have
—l—exp(— @)dR° + i ai xdR*
é_o a=1 aRa
0 0
96 yroy 5 99 4pe,
dR° = IR
x ar e
x
aiee 1 OROR®
ar 1
dR* + —dR*
TR TN T E
dp 1
IR FCXP( @)dR°
X 3G aG* aG*
= dR* dR’ dR°.
,,#,zﬂ JR* + JR® + dR°

Assuming that the solutions of Egs. (3.1) are not degenerate
(i.e., dAR°AdR ' A AdR* #0), we get

9G° 1 a6G* dp

= —exp{—@), —@)=0,
3R° . £° exp{ — @) 3R° t® exp(— @)
G° _ A ¢ A _ 1

dR* GR*"T GR* OROR*T &

G _ R _ . .,

oR*  AR°R*

So, utilizing Eqs. (3.2) and compatibility conditions (2.11),
we obtain

aG° 1

3R° = ?0— exp(— @), (3.3a)

dG°

R - (3.3b)

aG* dp 1

3RO + IR F expl— @) = (3.3¢c)

aG* 5 0

g7 = PG +P.G +0.G", (3.30)

G* oA 1

- =— 33

3" Rk T F (3.3¢)
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Inserting (3.3b) into Eq. (3.3c), we get

9G° I 96° _,
dR°GR* ~ IR* IR°
So we have ((3G °/3R °)exp @) . = 0. Then
aG°

SRo (K} =alR “lexp[( — @(R )],

where a is an arbitrary function of class C ' of the variable R °.
Finally we have

GOR)=®(R)+ f alrlexpl — @ (nR )] dr,

B . (3.4)
P (R) f“ dp(r,R) =
GR)= ——— — alr) Z—"exp|] — R )] dr,
(R) R 5 (r) IR pl —@(rR)]dr
where the function & (R ) satisfy the conditions (2.20).
Let on some regular k-dimensional surface

={x=¢p)}, p:=(p"p")

in the space & be given a value R |, i.e., the initial data have
the form

R (p)=p"%p) R(C(p)=p" (3.5)
where p° is treated as a given function of p. Inserting this into
Eqgs. (3.2) and (3.4), we get

- - - 0’1 ) .

MAEPI= 2P+ [ aresol —g ) d,

{3.6a)
A1 (P) =@, (p)
0% p) _ _
= [ et perol — @t p1 . B60)
Differentiating Eq. (3.6a) and subtracting Eq. (3.6b), we ob-
tain
AP, (P) =P (Plal o Bllexpl — @l p° p), P)],
se{1,...k }. (3.7)

In order that the conditions (3.7) on the surface I" should be
consistent, the following conditions must be satisfied:

A6 (P _  _ AP ()
Pl (p) Pl (p)
that is,
A(p)dS (p)~dp°(p). (3.8)

Hence taking into account that di, A - AdA, #0, we have
27_dA, Ndg* =0, so the function £*( 5) must be of the
form

IA

& =

For such a form of the function & ( ;) the regularity condi-
tions on the surface I" resolve themselves into

;W 9A,
94,04, o'
In front of the assumption that rank ||d4, /dp’|| = k, the
above condition is satisfied if we require that Hess(#')#0.

W f) 3.9

=k.

rank
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Inserting (3.9} into Eq. (3.8), we get

~ ow
/l(p)d§=d( A ——W)~dp°,
A, "
that is,
ow
°=w( A —W),
p ar, "~

where ¥ is an arbitrary monotonic function of one variable.
With these assumptions, Egs. (3.7) take the form

o(+ (G2 7)
_ expl @ (Y (OW /94, M, — W), p)]
V(W /AN, — W)

Inserting (3.10) into Eq. (3.6a), we have
®(p)=A(p}{(p)

. (3.10)

(OW /34, )R, — W) _
- f a(rlexpl — @ (r, p)] dr. (3.11)
(4]

Inserting (3.11) into the conditions (2.20) and using Egs. (3.6)
and (3.11), we obtain additional conditions for the functions
W(.)and ¥{), i.e.,

P

st

V(W /3A, A, — W) ap(r, ;) s
f [1—alr)] === exp[ — @(r, p)] dr
0 ap

VA(OW /A )A, — W) P
v, | (1~ apy) 22220
o %
Xexp| — @(r, p)] dr
P(OW /9ANA, — W)
+o. |
(¢]
Xexp[ —@(r,p)] dr

V(OW /A, — W)
+ f lalr) — 1]
0

X(32¢ (rnp) _ dp(rp) aqp(rﬁ))d,

la(r) —1]

dp'p’ dp' dp’
L PW A,
94,04, dp'
x(a‘p A, + ﬁl‘—) =0, s#te{l. ki (3.12)
ap* dp*

Thus we can formulate the following.
Theorem 3: Let be given a regular £-dimensional sur-
face I of the form

r={x=¢(p)}, p:=(p"p").
Then the initial data for the system (3.1),
R (p)=p» R (p)=p"p)

(where p®is a given function on the surface I"), are consistent,
if the functions ¢ ( p) and p( p) have the form

. OWWA(P) o~ ( L4

“‘ T ettt i 2 = W
&(p) 7R p(p) o,
where W is a certain function determined on an open subset

&* and ¥ (-) is a monotonic function of one variable.
The solution of the initial problem with initial data (3.5)

o),
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for the system (3.1) has the implicit form

A (ﬁ )x = cb(ﬁ ) + j a(rlexpl —<p(r,1~2 )1 dr,
(4]

94 (R) e dPR) J’*"a(r) dp (r,R)
JR* 3R* o IR*
X exp[ — @ (rR)] dr,
where

aw
o(v(54 - 7))
_ expl @ (Y(OW /IR N, W)R)]
S (OW /A, — W)

®(R)=A(R)¢(R)
W(BW /IAA, — W) ~
— J; a(rjexpl — @ (r,R)] dr,

while the functions W and ¥ satisfy additional conditions
(3.12).

Let us consider now the special case when k = 1. Then
the compatibility conditions (2.11) do not exist. In this case
the initial data are given on a certain curve LC & . Let us
assume that along this curve there is given a value R |,

= (R°,,R"|,). Let us also assume that the functions R °|
and R '{, areinvertible. Then as a parameter of this curve we
can choose the value R !, i.e.,

L={x=n'(r")}, Rop'(r')=(pr'hr")
or the value R 9, i.e.,
L={x=7%%}, Ron’r’)=("p'(").

Then the functions °—p'(r°) and r'—p°r') are inverses one
to another. Moreover, by virtue of the identity
7'(r') = 7% p°(r")) we have'®

7'(r') = 7)), (3.13)
Inserting this into Egs. (3.2) and (3.4), we get
GoR)=A(r')y'(r")

p°(r")
=®(r")+ '[ a(rjexp| — @ (r,r")] dr, (3.14a)

G'(R)=A(r')m'(r")
(') 1
=o(r') - J a(r)—a—g(L;r—)-exp[ —@(rr')] dr.
o or
(3.14b)
Differentiating Eq. (31.4a) and subtracting Eq. (3.14b), we
get
A(r)a'(r') = p%r')al p(r'Nexpl — @ (p%(r'),r)]. (3.15)
Taking Eq. (3.13) into account, it follows that

a(r’) = A p'(r*)°r)expl @ (7°, p'(F°)] (3.16)
and after inserting (3.16) into Eq. {3.14a} we have
o7’}
S(r'y=A{r'm'r') — 5 AP (A
xexpl @ (r, p'(r)) — @(r,r")] dr. (3.17)

Thus we get a theorem.
Theorem 4: If on some curve L C & the Cauchy condi-
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tionsR |, and R !|, aregivenforEq.(3.1)insucha way that

(1) function R°|, and R '{, are strongly

monotonic,
(2) for xeL a vector tangent to the curve L

does not belong to the annihilator of the forms

A°%R (x))and A '(R ( x)),

then in some neighborhood of the cuve L the

Cauchy problem has (locally) exactly one solu-

tion.

Proof: It is enough to show that for functions G°and G !
defined by formulae (3.14) and (3.17) the system (3.2) can be
resolved in the neighborhood of an arbitrary point x on the
curve L. Condition of local resolvability has the form

IG° 96 3G °
ar’’ o ar°’
0£det | oo a6t , | =% a6 a6
95 97 _ ] 5o 797
o’ o ar°’ o
3 aGO(acl —,‘ix)
ar° \ ort ’

where x = 7°(r°)el". We have to prove, that 3G °/3r° #0 and

3G '/9r' — Ax+0. By virtue of (3.14a) and (3.16) we have
aGO 0 0 ,.1
70 = a(r)exp[ — @ (r,r)]
= A ("% %expl — @ (©°.r) + @ (1)

=A(r'i°(r)#0 (3.18)

because by assumption (2) the tangent vector %#°(r°) does not
belong to the annihilator of A (r'). Similarly, utilizing Eqgs.
(3.3), (3.14b), and (3.18), we have

aG' d G ..
_/1=_Gl oy, )] — 50 ]
T —x N | e
dp 9G° (&p ) .
=A5 = A+4 0
o g T
because by assumption (2) the tangent vector 7 'does not van-
ishonA' = (dp/dr')A + A. Q.E.D.

A. The case when all a° 0

In the case of nonhomogeneous system (2.13), accord-
ing to the consideration in Sec. II, we have

dR°=A(R)exp[ @ (R)],

(3.19)
s _p (9P R) , ai(R))
ar =g (LR A R) + ,
£ OR® (R) IR?

and the solution is also determined by formulae (3.2), (3.4),
and (3.12) with additional restriction

(o (2w

°
on the arbitrary functions. Inserting (3.20) into Eqgs. (3.10)
and (3.12), we obtain the relations

o lo (¢ (G e =) )| = (G2 - #)

(3.20)

(3.21)
FW A (&p 6/1)

a A+ =) =0, 3.22
94,04, IR* \GR°* * = IR (3-22]
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which are the restrictions on the functions ¥ and W. Thus
we have:

Theorem 5: Let be given a regular k-dimensional sur-
face I" of the form

r={x=¢(p)}, pi=(p",r)
Then the initial data for the system (3.19),

R (p)=p, RC(p)=p"p) (3.23)
(where p° is the given function on the surface I" ), are consis-
tent, if the functions £ ( p) and p°( p) have the form

piS OWAR) o (aW B )

&*(p) o, pllp)=¥ o, Aw =W ),
where W is a certain function determined on an open subset
&* and ¥ () is a monotonic function of one variable.

If the conditions (3.21) and (3.22) are satisfied, then the
solution of the initial problem [with initial data (3.23)] for the
system (3.19) has the implicit form

- - - ( p) -
A(p)g(p)=¢(p)+fo expl — @ (r, 7)) dr,

A(p) 9P p)
$(p) =
dp* dp’
_ f"(p’mexp[ —@(r,p)] dr.
) ap°

Remark 4: When k = 1, the solution of the system
(3.19) is also determined by formulae (3.2) and (3.4) with ad-
ditional restriction a(r°)=1 on the arbitrary functions. From
Eq. (3.16) we see that in this case along the curve L we can
give only one function, for example, R °|, and then the other
one may be computed from the restriction a(r®)=1. So we
have:

Theorem 6: Let along some curve L be given the func-
tion R °|, . Let us assume that:

(1) the function R °|, is monotonic,

(2) equation A °(°,r'}5%7°) = 1 [where x = 5°(r°) is the
equation of the curve L parametrized by R °[, ] allows us
along the curve L, to determine uniquely the value
r'=RY,,

(3) the values R °|, and R '|, determined in this way
satisfy the transversality condition'? with respect to the form
A '(R | ), then the Cauchy problem

R ) = °
has, in some neighborhood of the curve L, exactly one solu-
tion.

B. The case when alla® =0
Let along some regular k-dimensional surface

r={x=¢(p), (s P¥)

inspace & be given a value R | r»i.e., theinitial data have the
form

R (p)=
Moreover, let be given a value
RO (po) = p3eR".
Then it follows from Eq. (2.26a) that
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RO%(p) =x~NCL(p)+p8 — CL(pol) = : 0 p)-
(3.24)

From Eq. {2.26b) we can determine the value of the functions
¥ ie,

o~ §lpl+po— & pol) o~ -~
¥ip)= f &y~ (r), pMdr + A7 (p)5 ( p).
0
(3.25)
We look for the conditions of the local resolvability of the
system (2.26). As Eq. (2.26a) always allows us to find the

value of R ® = R 9 x), so these conditions reduce to the non-
singularity of the matrix

s, __ d cxre s(,,—1 R (B . (D
M,._EEI—[L Ky ' R)dr+ AR )x — ¥ R)
_ fc'”co aKs(X_l(r),R)dr+ oA°(R)x _ d¥*(R)
o R’ IR R' "’
where s,7€{ 1,...,k }. Differentiating {3.25), we have
v o ~
aa ,(p) ag(,p)'(‘(p"(p),p)
0
o dp'
a4°(p) b= (P
+ %" < (p )+A(P)at- (3.26)
So the matrix M | takes the form
M: ‘9“’” e (p7) 7+ (5 E L2
o
— 2(p° (p>, 7 %ﬂ (3.27)

Thus we have:

Theorem 7: Let us assume that:

(1) along the regular k-dimensional surface I'C & are
given the values R® | - being the monotonic functions of their
arguments,

(2) for the value R °|~ determined from the formula
(3.24} any tangent vectors to the surface I do not belong to
the annihilator of the forms A°(R }| -,

(3) the conditions (2.24) are satisfied.

Then the Cauchy problem has exactly one solution in some
neighborhood of the surface I'.

IV. FUNCTORIAL PROPERTIES OF THE SYSTEM OF
EQUATIONS DETERMINING RIEMANN INVARIANTS

Let A: £-—& be the linear operator, and 4 L A A
be the dual operator. Then we can connect the system

dR° =&A°(R), R=(R*):&—H, s€{0,1,. .k}, (4.1)
£0— [O for homogeneous system (2.6) ]
1 for nonhomogeneous system (2.6))’
dim& =n + 1,
where A° :H—& , with the system of equations
dR* = &1°(R), R=(R*):Z—H, dim& =n+1, (4.2)
where 1° 4 *o1* - H—>&*, 5€{0,1,....k ].

Let us investigate the relation between the solutions of
the system (4.1) and (4.2). We notice that if R: & —H satisfies
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{4.1),ie.,dR’(x) = & A°(R [ x)), then for R: = RoA4 we have
dR°(y)=d (R’°A )(y) = dR’(Ay)eA = A * dR*(4y)
=A*[SARAY)] =4V (R(y).
So R = Rod satisfies the system (4.2).

Now we will show that if covectors A° = 4 *¥o1* arelin-
early independent, then all solutions of the system (4.2) can
be obtained in this way. _

Itis enough to check that every solution R: & —H of the
system (4.2} is of the form R = RoA4, where R:& —H satisfies
the system (4.1). Therefore, we have to prove that the follow-
ing formulation is valid:

T(x):=R(y)
that is Ay, = Ay, implies R ( y,) = R (y,).

Indeed, we have

LRy, =y =L RMU (3~ )
so that

if x=Ay,

E()’z)’—l—”}’i)zj;%—R(J’i“'t(}’z"}’i))dt
= fo dR(y, +t(y, — y )N y2 — p))dt

= [ STR+1(~2)

0 s=1

X (y2 —y))dt=0.

Thus we have defined the mapping T:% ,—H, where
& o =1m Ae¥.

If A is a surjection, then R: = T is defined on the _vyhole
space & . Let us show that R satisfies Eq. (4.1). For ye% and
x = Ay, we have

dR*(y) = £ 7 (R ( x))

50 A *o[dR*( x) — £ A*(R { x))] = 0. From injectivity it fol-
lows that (4.1) holds.

We will give another proof of this theorem under the
assumption that A° = 4 *o1’ are linearly independent and
that the system (4.1) is in involution. For the homogeneous
system (4.1) the forms A° (R ) and A°(R ) satisfy the same con-
ditions of involution'*' (see Paper I, Sec. III), i.e.,

T o =T+ BT, Vo =aid® +Bi4, r#s.
As we know, the solution R of the system (4.2) can be ex-
pressed in the implicit form

Y R)=T*R)y=A*(R )4y, (4.3)
where the functions ¥ * are solutions of the system

Voo =W+ BV, ré#s

On the other hand, resolving the system

WO (R)=A LR, (44)

with respect to the variable R, we get the solution of the
system {4.1). Inserting x = Ay into (4.4} and utilizing {4.3), we
find R ( x) = R ( y). That means that R = Ro4, and this ends
the proof.

For the nonhomogeneous system (2.6) the forms 4° (R )
and A° (R ) satisfy the same conditions of involution (2.7), i.e.,

2323 J. Math. Phys., Vol. 24, No. 9, September 1983

OR" =a Io? /{'OR" =ac/{ay

A e =BoA + 4527, A g =BLA" +£LA%, (45)

o€ (0,1,...k}, tell,..k}, o#t
According to the coniid_e_ration in Sec. II, we can determine
the form of covectors A*(R )and A* (R ) for which the compati-
bility conditions {4.5) are automatically satisfied. So we have
A°R)=7Z(Rjexp[ ¢ R)],

'R )~[/1(R)¢7R (R)+/1
Azw(R)= (R) +P
and
A%R)=A(R )expl ¢ (R)],
i'(R)~[/1(R P r(R)+ A (R)]
/i,R‘R( ) P /{ ( )+Prsi ( )+Qst/1( ) S#Z.
As we know, the solution R of the system (4.2) can be ex-
pressed in the implicit form

W"(Tu:{ = A(R)-Ap, B

W(R) =¥z Rj=2x \Rjy =Lz (R 4,
where the functlon ¥ is a solution of the system
VorwR)=P¥ = ([R)+ P ¥°x(R)+ Q¥ R)

t#sefl,..k}. (4.6)
On the other hand, resolving the system
VOR)=A(R)x, W(R)=¥°(R)=4AxR)x, (47
with respect to the variable R we get the solution of the sys-
tem (4.1). Inserting x = Ay into Eqgs. (4.7) and utilizing Egs.
(4.6), we find R ( x) = R ( y). That means that R = RoA and
this ends the proof.

Examples: Let & C &, be such a subspace that A*(R )|z
are linearly independent. It is easy to see that if 4:& —& is
immersion, then 4 *A*(R ) = A°(R )|z . In this case the above
solutions indicate that the projection R: = R |, of the solu-
tion R of the system (4.1) in the whole space & determines
the solution of the system in the subspace %', and, converse-
ly, every solution R of the system (4.1) can be uniquely ob-
tained from the solution H of the system (4.2} in the subspace
& C €. We can give the following interpretation to the ex-

tension of R to the R:
Let us define at every point x, € & a hyperplane

H (xg): = xo + An{A (R ( xo)),.-. A (R ( x,))}.

INI

1? )E
= (R)+ QA (R), s#t,

We see that R is constant on the intersection of such hyper-
plane with #. Additionally,

& + An{A 'R (xo) AP R (x))} = &
because in the case
& + An{A (R(x)),. A" (R (x))} # &

there woulg exist a nonzero element 4 € & * which would
vanish on & and

AnAn{A R (xo)),...A7 (R ( xo))}
= {A YR (xq))--., A7 (R ( xo))},

which would be in contradiction with the assumption that
(R )| are linearly independent. Thus the hyperplanes
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H (x,), xo € &, cover some neighborhood of & in the space
& . The solution R of the system (4.1) can be determined as
R(x):=R(xo)forx € H(xo). _
Suppose that some A°:H—& * have common constant
kernel €, € #,i.e,, A°*(R )|y, = Ofor R € H. In this case for
AZF/€ =%
the above considerations give us a procedure for the reduc-
tion of the system (4.2) to the smaller space & = /% .
Hence, the solutions R:& —H are constant along the fiber

layers 4 and “functorial mapping” R:& —H is the solution
of the Eq. (4.1).

V. PHYSICAL INTERPRETATION OF THE NONLINEAR
SUPERPOSITION OF THE SIMPLE WAVES IN
NONHOMOGENEOUS SYSTEMS

Now we show that the solutions of the system of Pfaff
forms (2.1) can be interpreted as the interaction of many
simple waves propagating on the simple state. For the sake of
simplicity this statement will be illustrated on selected exam-
ples. Let us consider a system of nonhomogeneous quasilin-
ear partial differential equations with two independent var-
iables (let it be time ¢ and one space variable x):

u, + A uu, =B u), (5.1)
(tx)e ECR?  u(x)=(u'(x),.,u'(x) e TR,

where A = A4/ (u) is a matrix of the dimensional / X /, while
B (u) = (B '(u),...,B' (u)) is vector with /-components. Simple
elements for homogeneous and nonhomogeneous equations
(5.1) are determined by algebraic equations as follows:

o, =AYy, =0, A =(yy —1), se{l,...k},

(5.2)

(A +A4A3We=B, A°=(A1A0)
Let us also consider the propagation of two simple waves on
a simple state [k = 2 in Egs. (2.1)]. By the appropriate nor-
malization of the length of the vectors ¥,,7,,7, we can make
the commutators (2.2) vanish. Thus we can choose the para-
metrization of the surface

u=f(R), R:=R%R"'R? (5.3)
tangent to the fields ¥,,%,,7, in the following way:
af
~—=, o=0,1,2. 5.4
Yo %o (5.4)

Hence du(x) = 2} _,u ,,dR°. From (2.1), under the as-
sumption that y,,y,,7, are linearly independent, we have
dR* =&A°, s=12, dR®°=4°. (5.5)

For such a case the system of Egs. (5.5) can be written in
terms of (only three now) new dependent variables. Eliminat-
ing the variables £° in Eq. (5.5), we obtain

R, + 0y(R)R°« =0, s=102, (5.6a)
R°, =A%(R%R'R?), (5.6b)
R°, =A%RO°R'R?) (5.6c)

Now we will show that the solution of the system (5.6)
describes interaction of waves, and we will justify the name
“simple wave on a simple state” for it.

It was proved in Refs. 16 and 17 that if the initial data
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are sufficiently small, then there exists such a time interval
[t5,T], in whch the gradient catastrophy’® for the solution
R (tx), 0 = 0,1,2, of the system (5.6) does not occur, Since
each of the functions R*(t,x), s = 1,2, is constant along the
appropriate characteristics C* :dx/dt = v, of the system
(5.6), then if we choose in the space & the initial conditions
for the function R* such that the derivatives R® , will have
compact and noninteracting supports

SUppR’ . (t5,x)C [a,,b, 1,
{5.7)

V' suppR ', (tox)suppR 2 (tex) =D, s=1,2,
.

a.,b, €

then, for arbitrary time t, < < T, suppR’ , (¢,x) is contained

in the “stripe” between appropriate characteristics of the

families C" passing through the ends of the interval [a, b, ].
It was also proved'® that if the initial data is sufficiently

small, then in the interval [#,,T'] the following condition can

be satisfied:

\ A

>0 {,x),(t,x') € [1,T) X R

ViR (%) — vR (8x')>e,  (5.8)

i.e., that every characteristic of the family C" has the tan-
gent with inclination (measured with respect to the positive
direction of the x axis) smaller than any characteristic of the
family C?,

It is evident that in such a case the stripes containing
suppR® , (¢,x) divide the remaining part of the space & into
the four disjoint regions (I-IV, respectively; see Fig. 1).

Intheregion G:& \[suppR ' , (f,-JusuppR  (t,)] the so-
lution R (¢,x) of the system (5.6) is described by the simple
state. In this region R° . = 0 and the solution R °(¢,x) satisi-
fies Egs. (5.6b) and (5.6¢), with R° = R, = const. From the
condition of compatibility of this equation, we obtain

/lo,Ro /\AO':O,

which means that the direction of A ° does not depend on the
variable R °, soit is constant on G. Choosing the parametriza-

c(!)

cw C“)

a, b, qQ, b, X
R'(tg ,x } =R"(x) R (to.x) = R* (x)

FIG. 1. The case of propagation of two simple waves on the simple state.
S = simple state; W, W, = simple waves propagating on the simple state S.
If the characteristics of one family intersect, we choose a particular value of
time T in order to exclude the possibility of gradient catastrophe.
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tion of the curve u = f(R °,R ',R ?) such that the covector A °
does not depend on the parameter R °, we can express the
solution on G in the form of the simple state (4.3) (see Paper
1), ie.,

7 =fj(R O’R(l)vR(Z)):

0

ar
where dj; —y4(f(R°R},R2)),

J=1,,
R°=1%+A19x, A°=constant vector.

Now let ¢, and ¢, be the moments, in which
suppR !, (t,x) and suppR ” , (£,x) have only one common
point. For times ¢ € (,,¢,) we have suppR ' , (£,x)n
suppR 2, (t,.x) = @ so the solution R® (¢,x) can be interpreted
as the propagation of two separate (noninteracting) simple
waves on the simple state. For the times ¢ € [¢,,t,] the charac-
teristics of the families C " and C ¥ containing suppR* , (¢,x)
cross each other, i.e., suppR ', (t,x)nsuppR * , (£,x) # Q. We
interpret this as an interaction of two simple waves on the
simple state. For times ¢ > ¢,, by virtue of the conditions (5.7)
and (5.8), the “stripes” containing the supports of the simple
waves separate again, i.e., we again have suppR | (t,x)
nsuppR % (t,x) = &, where R°, = — £°, 5 = 1,2. It means,
that the solution R’ (,x) decays in the exact way into the two
simple waves propagating on the simple state.

We see that, under all the above assumptions, in the
interaction of the two simple waves on the simple state,
which can be described by Riemann invariants, the solution
decays in the exact way into the two simple waves on the
simple state, being of the same type as in the initial moment.

We have in this case the law of conservation of the num-
ber and type of the simple waves propagating on the simple
state, so we can speak about elastic interaction of simple
waves on the simple state.

In the case of more then two simple waves (k > 2) the
interpretation is analogous but more complicated, because
the region & is divided by supports of the functions
R ',.. R* into the 2* subsets.

In Refs. 6 and 19 it was proved that in the case of inter-
action of many simple waves described by Riemann invar-
iants the number and the type of waves®® is also conserved. It
was also proved that such solutions, resulting from the inter-
action of many simple waves propagating on the simple
state, decay in the exact way into simple waves on the state,
of the same kind as those entering the interaction.

The possibility of the nonlinear superposition of simple
waves on a simple state in the case that can not be described
by Riemann invariants was discussed in Refs. 6 and 19. The
conditions guaranteeing the existence of the solutions of the
Pfaff system (2.1) with two independent variables take the
form'

k
[}/S!Vrlz Z Cf,)’p: A

=1

Pk srefl,. kis (593,)
[7S’7/0]= Z Cﬁﬂ’o,

o=1
(A 0‘;/, - <(Z),[ Yrs J’o]>/1 0)/\/1’ = O’
A°MA 07“ =0, A7 AA°#0
for a0, a,0€{0,1,. .k},

(5.9b)
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where the covector € T, # has the property (w,y, ) = 8°r
and the coefficients C 7, are not necessarily constant.

The physical interpretation of this solution covers also
the case of generation of waves as a result of their interaction
on a simple state. Generation can take place for example
when the commutators (5.9) of the vector fields ¥, and ¥,
are linear combinations of these fields y,, ¥4, and also of
other fields Ypss¥ar It means that the waves connected with
these fields ¥,,,...,%, take part in the interaction. So as an
effect of the interaction of two simple waves we obtain new
waves (of another type than those at the initial moment). If
these new waves do not vanish asymptotically for large ¢,
then the effect of generation is permanent (in accordance
with the accepted terminology it is “‘a nonelastic interac-
tion”).

VI. THE EXAMPLES OF APPLICATIONS FOR
NONHOMOGENEOUS EQUATIONS OF
MAGNETOHYDRODYNAMICS

We show as an illustration the example of exact solution
obtained by means of the procedure described here (other
examples of such solutions for the equations for gas and
magnetohydrodynamic can be found in the papers*5'%2}),
Let us consdier the flow of ideal compressible conductive
fluid placed in magnetic field in the presence of Coriolis
forces B = p{) X u. We assume that all unknown functions
depend only on two independent variables (let them be time ¢
and one space variable x). With the above assumptions the
equations examined form the quasilinear hyperbolic system
as follows?22*;

%) d
a_/t’ + E_(pul)=o, (6.1a)
ai(fz) +,,xi(_llk_) —0, (6.1b)
t\p dx \p
du' | o' 19 ( (H2)2+(H3)2)
— = =2 =L 1) =0 (61
5 T o o P+ - (6.1c)
2 2 H]
O L 20 9 g (6.1d)
ot Ix 4mp Ox
3 3 H!
L Iy E N (6.1¢)
at Ix 4mp Ix
2
agft * ai(u‘H%,—uZHg,)=o, (6.1f)
X
3
ag +ai(u‘H3—u3H(‘,)=0, where = (,0,0),
X

(6.1g)

where we used the following notations: p = the density of the
fluid, p = the pressure of the fluid, u = the vector field of the
fluid velocity, H = the vector of the magnetic field, ) = the
angular velocity of the fluid and « = the polytropic expo-
nent. We can assume, without losing generality, that the co-
efficient of the magnetic inductive capacity equals the unity:
1 = 1. We recall here that in the case of two independent
variables ¢ and x the first component of the magnetic field
H § has a constant value. So in this case the system (6.1)
reduces to seven equations for seven unknown functions. It
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TABLE 1. Homogeneous simple elements. We introduce the notation § = », — u'. The function & possesses the physical sense. It corresponds to the velocity
of the propagation of the disturbance relative to the fluid. v; is the local velocity of the ith eigenvalue wave.

t 2 17 2 77
61 =i[(g+L)+ H ]I/li[(g— Hl )2+ H l/Z,
21\p  Jdmp 4mp P amp 4mp

_ (HI)Z ~ H

a4 =8 2 = 27 ;=
+ + 4 H 4 , i=1,2,3.
sgn. Name of the wave
) 4+ corresponding to
No. Notation 5+ Eigenvalues v, Eigenvector y, the eigenvector y,
1 E +1 vy =1u' (1,0,0,0,0) =y, entropic E
2 F_ ~1 + v,=u'-8, : ii magnetoacoustic
3 s_ -1 - by=u' —&_ P
s s, +1 - be=u' +6_ n=| @rdx fast F,
5 F, +1 + vs=u'4+8, _E:j::tgﬂ slow §,
j=2,3,4,5.
Ve =u'— H 0
6 A -1 Vanp 0
0
—H 3
7 A4, +1 b=+ H' v =1 Jamp alfven 4
Vémp H’®
Vémp
—H 3
H 3
k=67
is convenient to write the vector u in the following form: dp -0 dp 4 o A
o ] . GR° " R grz PO
u=(ppu'i,H), u='@), H=HH),
= L P _o 9 _ P _
where by @ End H we denote the two-dimensional vectors: GR® " SR kpd _, GRZ kpA .,
it = (u*,u’), H = (H %, H ?). Eigenvalues, eigenvectors and the ! P !
corresponding seven types of distur